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Introduction
Very strong surface winds sometimes develop when air flows over a high mountain
ridge with a steep lee slope. Such winds are known to occur at many locations through-
out the middle latitudes. Local names for these winds include the Alpine foehn, the
Rocky Mountain chinook, the Croatian bora, the Santa Ana in southern California,
and the Argentine zonda. These winds are collectively referred to as downslope winds.
Downslope winds in the lee of major mountain barriers can approach hurricane strength.1

Every few years, for example, the eastern slope of the Colorado Front Range (part of
the Rocky Mountains) experiences a damaging windstorm with peak gusts as high as
60 m s−1 (216 km hr−1). An anemometer trace recorded at the National Center for At-
mospheric Research in Boulder, Colorado during a strong chinook is shown in Fig. 1.

In modern meteorological usage, downslope winds are distinguished from kata-
batic winds by the dynamical processes driving each flow. Katabatic winds usually
refer to shallow gravity currents generated by the cooling of surface air over sloping
terrain. Downslope winds usually refer to winds generated as a deeper layer of air is
forced over topography. In contrast to katabatic winds, the diabatic cooling of air in
contact with a cold surface plays no essential role in the dynamics of downslope winds.

In most downslope wind events (including the typical foehn and chinook) the onset
of the downslope wind is accompanied by an increase in the surface temperature and
a drop in the dew point. Whereas the area of violent wind is limited to a relatively
narrow swath along and adjacent to the lee slope, the warmer drier air mass can extend
much further downstream. Nevertheless, in some cases the upstream conditions may
be so cold, and the initial downstream conditions sufficiently warm, that the onset
of a downslope wind brings a drop in temperature. The most well-known example
∗From the Encyclopedia of Atmospheric Sciences, 2003, pp. 644-650, Elsevier Science Ltd.
†Corresponding author: University of Washington, Atmospheric Sciences, Box 351640, Seattle, WA

98195-1640, USA.
1By definition, hurricanes are storms with sustained winds of at least 32 m s−1 (115 km h−1).
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Figure 1: Anemometer trace recorded at the National Center for Atmospheric Research
during the onset of the 17 January 1982 Boulder windstorm. Time reads right to left.
(After Fig. 4.11 of Durran 1990).

of this type of cold downslope wind is the Croatian bora. Despite the difference in
the evolution of the surface temperature, there does not appear to be any significant
dynamical distinction between the processes responsible for the development of high
downslope winds in cold and warm events.

Contours of the potential temperature observed on 11 January 1972 during an in-
tense downslope windstorm are plotted in the vertical cross-section through Boulder,
Colorado shown in Fig. 2. These contours provide a rough indication of the streamlines
in the flow, which is moving from left to right. (The isentropes would be exactly iden-
tical to streamlines if the flow were steady, inviscid, adiabatic and two-dimensional).
A large-amplitude mountain wave is clearly visible in the potential temperature field
just to the lee of the continental divide. The apparent horizontal displacement of the
wave trough at upper levels from its position at low levels is due to a two-hour differ-
ence between the times at which observations were collected in the upper and lower
flight levels. Also apparent in Fig. 2 is a layer of enhanced static stability around
the 550 mb level in the upstream flow. When intense downslope winds develop in a
deep cross-mountain flow, strong mountain waves and low-level stable layers similar
to those shown in Fig. 2 are usually present.

The connection between mountain waves and strong downslope winds is less ap-
parent in situations where the cross-mountain wind component reverses with height
at some level in the middle or lower troposphere, as is often the case in the Croatian
bora or when strong winds blow from the east down the western slopes of the Wasatch
mountains in Utah. Contours of the potential temperature observed during a moderate
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Figure 2: Cross section of potential temperature along an east-west line through Boul-
der, Colorado from aircraft observations collected on 11 January 1972. The heavy
dashed line separates data collected by two aircraft at different times. Flight tracks are
indicated by the dotted lines; those segments along which significant turbulence was
encountered are denoted by pluses. (After Fig. 7 of Lilly 1978.)

bora along a cross section through Senj, Croatia are shown in Fig. 3. The flow in this
example is from right to left. A low-level inversion is once again apparent upstream of
the mountains; however, no significant wave activity is present above the 3-km level.
In this case the upstream inversion is coincident with a region of strong vertical wind
shear in which the cross-mountain wind component reverses direction. The level at
which the cross-mountain wind component drops to zero is a critical level2 for steady
two-dimensional mountain waves, and any gravity waves triggered by the mountain
break down and dissipate as they approach this critical level.

The hydraulic analog
The dynamics governing the development of strong downslope winds in the atmosphere
are analogous to those governing the rapid increase in speed that occurs when water
flowing over a rock in a river undergoes a transition from a relatively slow velocity
upstream to a thin layer of high-velocity fluid over the downstream face. In such cir-
cumstances, a turbulent hydraulic jump often develops downstream of the rock at the
point where the high-speed flow decelerates back to the ambient velocity of the river.

2A critical level is a level at which the phase speed of a wave equals the speed and direction of the
basic-state flow.
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Figure 3: Cross section of potential temperature along a northeast-southwest line
through Zagreb and Senj, Croatia. (After Fig. 9b of Smith 1987).

Since the fundamental processes responsible for the rapid acceleration of water flowing
over a rock can be explained more simply than those which govern downslope winds
in the atmosphere, let us begin by considering the hydraulic model for a shallow layer
of water flowing over an obstacle in an open channel.

Suppose a homogeneous fluid, such as fresh water, is flowing over a ridge-like
obstacle. Assuming the flow is steady and that there are no variations in the coordinate
direction parallel to the ridge axis, and making the hydrostatic approximation, the flow
is governed by the horizontal momentum equation

u
∂u

∂x
+ g

∂D

∂x
= −g ∂h

∂x
, (1)

and the mass continuity equation

∂uD

∂x
= 0, (2)

where x is the horizontal coordinate directed perpendicular to the ridgeline, u is the
velocity in the x direction, D is the thickness of the fluid, and h is the local height of
the obstacle. Using (2) to substitute for ∂u/∂x into (1) yields(

1− F−2
) ∂

∂x
(D + h) =

∂h

∂x
. (3)

Here
F =

u√
gD

, (4)
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Figure 4: Behavior of shallow water flowing over an obstacle: (a) everywhere super-
critical flow, (b) everywhere subcritical flow, (c) hydraulic jump after a transition from
supercritical to subcritical flow over the crest. (After Fig. 4.5 of Durran 1990).

is the Froude number, which is the ratio of the local flow speed to the local phase speed
of a linear shallow-water gravity wave.

According to (3), the magnitude of the Froude number determines whether the free
surface rises or falls as the fluid ascends the upstream slope of the obstacle. The case
F > 1, known as supercritical flow, is shown in Fig. 4a; the fluid thickens and slows as
it passes over the top of the obstacle, and it reaches its minimum speed at the crest. The
accelerations experienced by the fluid are qualitatively similar to those experienced
by a hockey puck traversing a frictionless ridge of ice. The case F < 1, known as
subcritical flow, is shown in Fig. 4b. The fluid-parcel accelerations in the subcritical
flow seem counterintuitive in that the fluid thins and accelerates as it crosses the top of
the obstacle, reaching its maximum speed at the crest.

Why does a subcritical flow accelerate as it encounters rising bottom topography?
In contrast to a frictionless hockey puck, the acceleration of a fluid parcel is deter-
mined not only by gravity and by the angle of the slope, but also by pressure gradient
forces. The steady-state momentum equation (1) requires a three-way balance between
acceleration (the first term), pressure gradient forces arising from changes in the fluid
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depth (the second term), and the work per unit mass per unit horizontal distance done
against gravity while ascending the sloping topography (the third term). The value of
the Froude number determines whether the work done against gravity is predominately
balanced by accelerations or by the pressure gradient force. From (2)(

u
∂u

∂x

) /(
g
∂D

∂x

)
=

(
u
∂u

∂x

) /(
−gD
u

∂u

∂x

)
= −F 2. (5)

Thus in steady open-channel hydraulic flow, acceleration always opposes the pressure
gradient force due to changes in fluid depth. Furthermore F 2 may be interpreted as
the ratio of the magnitude of the acceleration to the magnitude of the pressure gradient
force generated by changes in the fluid depth. In supercritical flow (F > 1) accelera-
tion dominates the pressure gradient force and the three-way balance in (1) is satisfied
such that fluid parcels ascending the upstream slope decelerate as they do work against
gravity.

Before discussing the subcritical case, it is helpful to recast the discussion in terms
of the conversions between kinetic energy (KE) and potential energy (PE). Equation
(1) implies that u2/2+g(D+h) is constant along a streamline. This is just Bernoulli’s
theorem for steady incompressible hydrostatic flow since the contribution of w2/2 to
the total kinetic energy is neglected in the hydrostatic approximation. The term g(D+
h) represents the combined potential energies associated with the gravitational and
pressure fields, as may be verified by taking the hydrostatic pressure to be zero at the
top of the water and choosing the z = 0 level to coincide with the bottom of the channel
away from the obstacle; then at an arbitrary level z,

gz +
p

ρ0
= gz + g(D + h− z) = g(D + h). (6)

According to this generalized interpretation of potential energy, fluid parcels ascending
the obstacle in a supercritical flow slow down as they convert kinetic energy (KE) to
potential energy (PE), and after passing the crest they reaccelerate as PE is converted
back to KE (Fig. 4a).

On the other hand, in subcritical flow (F < 1) the pressure gradient force dominates
acceleration and the three-way balance in (1) requires that fluid parcels accelerate in the
direction opposite to the component of gravity parallel to the topography. As shown in
Fig. 4b, fluid parcels ascending the obstacle accelerate as the free surface drops and PE
is converted to KE. After passing the crest, the parcels decelerate as KE is converted
back to PE. The disturbance centered over the obstacle in Fig. 4b is a steady surface
gravity wave.

The flow regime that serves as an analog for downslope windstorms is shown in
Fig. 4c. If the flow is subcritical upstream and if a column of fluid undergoes a suf-
ficient acceleration and experiences a sufficient decrease in thickness as it ascends to-
ward the crest, a transition from subcritical to supercritical flow occurs at the top of
the obstacle. Since the lee-slope flow is now supercritical, fluid parcels continue to
accelerate as they descend, and very high velocities can be produced because PE is
converted to KE during the entire time over which a fluid parcel traverses the obsta-
cle. The deceleration that would otherwise occur in the lee-side portion of the standing
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gravity wave is disrupted when the flow becomes supercritical. In this case fluid parcels
eventually decelerate when they pass through a turbulent hydraulic jump at some point
downstream from the crest.

Application of the Hydraulic Analog to the Atmosphere
The hydraulic analog is best applied to the atmosphere in a qualitative, rather than an
quantitative, manner. Quantitative application is hindered by the difficulty of defining
a dynamically meaningful Froude number in vertically unbounded continuously strat-
ified flow. A variety of expressions have been described as Froude numbers in the
literature, but all of the simple expressions have serious deficiencies.

The parameter U/(Nh0), where N is the Brunt-Väisälä frequency, U the wind
speed, and h0 is the maximum mountain height, is sometimes referred to as the Froude
number in idealized cases in whichN andU are constant throughout the upstream flow.
Unlike the denominator in the conventional shallow-water Froude number, Nh0 is not
the horizontal phase speed of any particularly significant wave.3 On the other hand, the
maximum perturbation horizontal wind speed u′ in linear flow over an obstacle with
constantN and U scales likeNh0, so that U/(Nh0) ≈ U/u′ might be better described
as a nonlinearity parameter.

When there is a strong well-defined inversion at some elevation H in the upstream
flow, many authors have attempted to define a Froude number as U/

√
g′H , where

g′ = g∆θ/θ0 is the “reduced gravity,” ∆θ is the increase in potential temperature
across the inversion, and θ0 is the mean potential temperature below the inversion. The
difficulty with this approach is that it implies that the pressure gradient force is entirely
determined by the vertical displacements of the inversion layer and thereby neglects
the influence, on the surface pressure gradient, of vertical displacements in the stably
stratified fluid above and below the inversion. Moreover, it is also very difficult to
determine a precise quantitative value for U/

√
g′H in more general applications in

which the wind speed is not constant below the inversion and the inversion itself may
be indistinct. As a consequence, the reduced-gravity shallow-water model, in which F
is replaced by U/

√
g′H in (3), will not reliably yield reasonable approximations to the

speed and depth of the downslope flow in actual windstorms.
Significant downslope winds have been observed to develop in three basic situ-

ations: (1) when a standing mountain wave in a deep cross-mountain flow achieves
sufficient amplitude to overturn and breakdown at some level in the troposphere, (2)
when standing mountain waves break and dissipate at a critical level in a shallow cross-
mountain flow, and (3) when there is sufficient static stability near mountain-top level in
the cross-mountain flow to create high downslope winds even without wave breaking.
The qualitative application of hydraulic theory to the dynamics of downslope winds
centers on the idea that in all three of these cases there is a transition from wave-like
behavior over the upstream slopes of the topography to a non-wave-like regime in the
lee.

3Nh0 is the phase speed of a hydrostatic internal gravity wave with vertical wavelength 2πh0, but there
is nothing particularly significant about this wavelength in contrast to other similar waves with wavelengths
such as 5h0 or 6h0.
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First consider the case of breaking waves in a deep cross-mountain flow. The struc-
ture of the low-level horizontal velocity perturbations in a stationary 2D internal gravity
wave forced by an isolated ridge are shown in Fig. 5a. In this case the upstream wind
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Figure 5: Perturbation horizontal velocity in flow over an isolated mountain when: (a)
Nh0/U = 0.6, contour interval 1 m s−1 and (b) Nh0/U = 1.2, contour interval 2 m
s−1.

and static stability are constant with height such that N = 0.01047 s−1 , U = 10 m
s−1, and Nh0/U = 0.6. Streamlines for this same stationary internal gravity wave
are plotted in Fig. 3a of the entry Lee Waves and Mountain Waves. As apparent in
Fig. 5a, the detailed structure of the velocity perturbations in the internal gravity wave
are somewhat different from those in the surface gravity wave schematically illustrated
in Fig. 4b. In particular the maximum perturbation surface wind speed occurs halfway
down the lee slope in the internal gravity wave, whereas it occurs at the crest in the
surface gravity wave. Nevertheless, both types of waves allow a fluid parcel to arrive at
the ridge crest with a positive perturbation velocity (i.e., to undergo a net acceleration
while ascending to the crest), and in both cases the wind speed eventually returns to
its ambient value well downstream of the crest as KE is converted back to PE in the
lee-side portion of the stationary gravity wave.

The enhancement of the perturbation horizontal winds along the lee slope in Fig. 5a
is too weak to create significant downslope winds. (The total wind speed increases from
10 m s−1 far upstream to approximately 15 m s−1 in the lee.) Much stronger downslope
winds occur in the case shown in Fig. 5b, which is a vertical cross section of the per-
turbation horizontal velocity in a simulation identical to that shown in Fig. 5a, except
that the height of the mountain has been doubled so that Nh0/U = 1.2. The higher to-
pography in this case forces the internal gravity wave to overturn and produces a well
mixed region of weakly reversed flow at elevations around 3 km over the lee slope.
(The region of reversed flow is that in which the horizontal perturbation velocity is less
that -10 m s−1.) Streamlines for this same wave-breaking case are shown in Fig. 4a of
the entry Lee Waves and Mountain Waves. Although the lee-side flow is dramatically
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different when the wave is breaking, the flow upstream of the crest remains consistent
with that in a stationary internal gravity wave. Linear theory for stationary internal
gravity waves predicts that doubling the mountain height should double the amplitude
of the perturbation horizontal velocities without changing the spatial distribution of the
perturbations relative to the mountain, and this is essentially the case in the region up-
stream of the crest. Note, for example, the similarity of the 3 m s−1 contour in Fig. 5a
to the 6 m s−1 contour in Fig. 5b.

Since the wave in Fig. 5b has become unstable and overturned above the lee slope,
there is no standing gravity wave to decelerate the fluid parcels as they descend. Instead
these parcels continue to accelerate as PE is converted to KE along the entire lee slope,
generating strong downslope winds in which the maximum surface wind speeds (> 28
m s−1) are approximately three times stronger than the 10 m s−1 flow far upstream.
Wave breaking in a deep cross-mountain flow appears to have played an important role
in the generation of the 11 January 1972 Boulder, Colorado windstorm. The presence
of breaking waves is suggested by the almost vertical orientation of the isentropes
on the lee side of the trough in the upper-level wave in Fig. 2 and by the turbulence
encountered along the flight legs through this region.

The second type of situation conducive to the development of strong downslope
winds is illustrated in Fig. 3. In this bora event a critical level at an elevation of about 2
km disrupts the lee-side gravity wave so that once again, fluid parcels near the surface
undergo a net acceleration in the wave-like upstream flow as they ascend to the moun-
tain crest and then continue to accelerate as they convert PE to KE while descending
the entire lee slope. The vertical displacement of a streamline about its initial undis-
turbed level δ(x, z) can be modeled with reasonable fidelity in the flow beneath the
critical layer by solving the hydrostatic Long’s equation

∂2δ

∂z2
+
N2

U2
δ = 0, (7)

subject to the lower boundary condition that the streamline follow the topography,

δ[x, z = h(x)] = h(x) (8)

and an upper boundary condition in which the horizontal wind speed is held constant
along a “dividing streamline” separating the well-mixed turbulent region from the un-
derlying high-speed flow. In the case shown in Fig. 3, the 294 K isentrope approximates
a dividing streamline while the 296 K isentrope roughly coincides with the top of the
wedge of well mixed air downwind of the crest. Very close mathematical analogies
exist between conventional shallow-water hydraulic theory and the mathematical solu-
tions to (7)–(8), although there is no simple parameter that plays the role of the Froude
number in this analogy.

The third situation that produces strong downslope winds may occur when there is
high static stability at low-levels in the cross-mountain flow and lower stability aloft.
A prototypical example of this type is presented in Fig. 6, which shows contours of
the perturbation horizontal velocity field and streamlines from a numerical simulation
identical to that described in Fig. 5a, except that the Brunt-Väisälä frequency above
3 km in the upstream flow is reduced by a factor of 0.4. Comparison of the horizon-
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Figure 6: Two-layer flow over an isolated mountain in which the upstream value of
Nh0/U is 0.6 in the lower layer and 0.24 above: (a) perturbation horizontal velocity,
contour interval 2 m s−1, (b) streamlines within the lower layer.

tal wind speed perturbations between Fig. 5a and Fig. 6a shows that the perturbation
horizontal winds are twice as strong and that the maximum winds have shifted to the
surface along the lee slope in the two-layer flow. The amplification of the surface winds
in the two-layer simulation is produced without wave breaking; in fact the flow does
not come close to stagnation.

The streamlines within the lower layer shown in Fig. 6b appear similar to those in
water undergoing a transition from subcritical to supercritical flow over the crest of an
obstacle. Near the base of the lee slope in Fig. 6, the flow recovers toward ambient
conditions by radiating energy downstream in a series of vertically trapped gravity
waves. The removal of energy by these trapped waves is analogous to the dissipation of
energy at the point where the flow recovers toward ambient downstream conditions in
a hydraulic jump in the standard shallow-water model (Fig. 4c). Additional sensitivity
studies have demonstrated that the changes in the depth of the lower layer and the
maximum height of the mountain modify the two-layer flow in a manner one would
expect on the basis of hydraulic theory. In particular, making the lower layer too deep
or the mountain too small eliminates the transition to a high wind regime.

In actual downslope wind events the dynamical influence of a low-level stable layer
may act in concert with wave breaking to generate very high winds. Indeed climato-
logical data and numerical experiments suggest this is often the case in Boulder wind-
storms. In particular, nonlinear wave amplification due to the presence of a low-level
stable layer appears to have served as a necessary precursor to wave breaking during
the 11 January 1972 event.

See also: Katabatic winds, Mountain waves, Buoyancy waves, Lee Vortices
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