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Introduction

Buoyancy perturbations develop when stably stratified air ascends a mountain barrier.
These perturbations often trigger disturbances that propagate away from the mountain
as gravity (or buoyancy) waves. Gravity waves triggered by the flow over a mountain
are referred to asmountain wavesor lee waves. Mountain waves sometimes reveal
their presence through dramatic cloud formations, such as smooth lenticular clouds
(see Figs. 4 and 5) and ragged rotor clouds. Large-amplitude mountain waves can
generate regions of clear-air-turbulence that pose a hazard to aviation. Large-amplitude
mountain waves may also produce very strong winds that blow down the lee slope of
ridge-like topographic barriers (seedownslope winds).

What happens to mountain waves after they are generated? If the wave amplitude
becomes large in comparison to the vertical wavelength, the streamlines in a vertically
propagating mountain wave steepen and overturn in a manner roughly analogous to a
breaking wave in the ocean. Such “convective” overturning often occurs as the waves
enter the lower stratosphere where they encounter increased static stability and de-
creasing horizontal wind speeds. The convective overturning of vertically propagating
waves is also promoted by the systematic decrease in atmospheric density with height.
Those waves that do not breakdown due to convective overturning before reaching the
mesosphere are ultimately dissipated by the vertical transfer of infra red radiation be-
tween the warm and cool regions within the wave and the surrounding atmosphere
(“radiative damping”).

Horizontal momentum is transported by mountain waves from the regions of wave
dissipation to the surface where a net pressure force is exerted on the topography. A
decelerative force is exerted on the large-scale atmospheric circulation in those regions
where the wave undergoes dissipation.

The basic structure of a mountain wave is determined by the size and shape of the
mountain and by the vertical profiles of temperature, wind speed and moisture in the
impinging flow. The overall character of the wave can often be predicted on the basis
of linear theory, in which the mountain is assumed to be small in comparison with
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the vertical wavelength of the mountain wave, and such theory will be the subject of
the next section. Nevertheless, nonlinear effects do exert an significant influence on
the wave amplitude and are essential to the dynamics of mountain-wave dissipation in
regions of wave-breaking; such effects will be considered later in this article.

Linear Mountain-Wave Theory

The strongest mountain waves are forced by long quasi-two-dimensional ridges that
are sufficiently narrow that the dynamical influence of the Coriolis force can be ne-
glected. The basic dynamics of these waves are largely captured by the linear theory
for steady two-dimensional Boussinesq flow over an obstacle; for which the linearized
momentum, thermodynamic, and continuity equations may be reduced to the following
single equation for the vertical velocityw,

∂2w

∂x2
+

∂2w

∂z2
+ `2w = 0. (1)

Herex is the horizontal coordinate perpendicular to the ridge-line;z is the vertical
coordinate, and

`2 =
N2

U2
− 1

U

d2U

dz2

is the Scorer parameter in whichU(z) is the speed of the basic-state flow andN(z) is
the Brunt-V̈ais̈alä frequency (or alternatively, the buoyancy frequency). In the Boussi-
nesq limit, the Brunt-V̈ais̈alä frequency may be defined in terms of the basic-state
potential temperatureθ(z), a constant reference potential temperatureθ0, and the grav-
itational accelerationg, such thatN2 = (g/θ0)dθ/dz.

Neglecting the effects of surface friction, the velocity perpendicular to the topog-
raphy must vanish at the surface of the topographyz = h(x). This constraint provides
a lower boundary condition for (1), and can be approximated to the same accuracy
as the linearized governing equations asw(x, 0) = U∂h/∂x. The atmosphere has
no distinct upper boundary, so the upper boundary condition is imposed in the limit
z → ∞. In order to assure the physical relevance of mathematical solutions to (1) in
the infinitely deep atmosphere, those solutions must satisfy one of two possible condi-
tions: either (i) the perturbation energy density must approach zero asz → ∞, or (ii)
if the perturbation energy density is finite asz →∞, then the perturbation energy flux
associated with each individual vertically propagating mode must be upward. The sec-
ond condition allows the representation of disturbances generated within the domain
that propagate energy upward to arbitrarily great heights, but it prohibits downward
propagating modes from radiating energy into the domain from infinity.

Constant wind speed and stability, sinusoidal ridges

As a first example consider flow in a horizontally periodic domain in whichh(x) =
h0 sin(kx). The lower boundary condition becomesw(x, 0) = Uh0k cos kx, and so-
lutions to (1) subject to this lower boundary condition may be written in the form

w(x, z) = w̃1(z) cos kx + w̃2(z) sin kx. (2)



Lee Waves and Mountain Waves 3

Substituting (2) into (1), one obtains

d2w̃i

dz2
+ (`2 − k2)w̃i = 0 i = 1, 2. (3)

Consider the simplest possible atmospheric structure in whichN andU are constant
with height. Without loss of generality we will focus on the case in whichU > 0
andk > 0. SinceN andU are constant,̀2 = N2/U2 is also constant. Defining
ν = (`2 − k2)1/2 andµ2 = −ν2, the solution to (3) may be written

w̃i(z) =
{

Aie
µz + Bie

−µz k > `,
Ci cos νz + Di sin νz k < `,

(4)

whereA, B, C andD are constants to be determined by the upper and lower boundary
conditions. Note that the fundamental character of the solution depends on the relative
magnitudes of the Scorer parameter and the horizontal wavenumber.

If ` < k, or equivalently, if the intrinsic frequency of the waveUk is greater thanN ,
solutions to (3) either grow or decay exponentially with height. Only the solution that
decays with height is admitted by the upper boundary condition that the perturbation
energy density must approach zero asz →∞. The vertical velocity satisfying (1) and
the upper and lower boundary conditions is

w(x, z) = Uh0ke−µz cos kx. (5)

On the other hand, if̀ > k, the solutions to (3) are sinusoidal functions ofz that
neither amplify nor decay asz → ∞. The upper boundary condition then requires
that the perturbation energy flux in the wave be upward, or equivalently, that the group
velocity in the wave be directed upward. The dispersion relation for the time-dependent
generalization of (1) is

ω = Uk ± Nk

(k2 + m2)1/2
, (6)

whereω is the frequency andk andm are the horizontal and vertical wavenumbers
in an arbitrary wave of the form<

(
ei(kx+mz−ωt)

)
. Since by assumptionU > 0, all

steady waves (for whichω = 0) are associated with the negative root in (6), and their
vertical group velocities are

∂ω

∂m
=

Nkm

(k2 + m2)3/2
.

Upward group velocity and upward energy transport are obtained whenk andm have
the same sign. Thus wheǹ> k, the solution to (1) satisfying the upper and lower
boundary conditions may be expressed as

w(x, z) = Uh0k cos (kx + νz) . (7)

The difference between these two wave structures is illustrated in Fig. 1, which
shows streamlines over a series of sinusoidal ridges in a steady flow withN = .01
s−1 andU = 15 ms−1. In the case in Fig. 1a the topographic wavelength is 8 km and
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Figure 1:Streamlines in steady airflow over an infinite series of sinusoidal ridges whenN =
.01 s−1, U = 15 ms−1, and the wavelength of the topography is (a) 8 km (caseUk > N ) or (b)
40 km (caseUk < N ). The flow is from left to right. The lowest streamline coincides with the
topography.

`2 < k2 (or equivalentlyUk > N ); the waves decay exponentially with height, and the
wave crests are aligned vertically. In the case in Fig. 1b the topographic wavelength
is 40 km and`2 > k2 (or Uk < N ); the waves propagate vertically without loss
of amplitude, and the wave crests tilt upstream with height. The waves decay away
from the forcing when the intrinsic frequency exceeds the Brunt-Väis̈alä frequency
(Uk > N ) because there is no way for buoyancy restoring forces to support oscillations
at such high frequencies (seebuoyancy waves). On the other hand, when the intrinsic
frequency is less than the Brunt-Väis̈alä frequency, vertical propagation occurs because
buoyancy restoring forces can support air-parcel oscillations along a path slanted off
the vertical at an angleφ = cos−1(Uk/N). In steady mountain waves,φ is the angle
at which lines of constant phase tilt off the vertical.

Isolated mountain, vertical variations in N or U

The mountain-wave solutions (5) and (7) are only valid for air streams with constant
basic-state wind speed and stability flowing across an endless series of sinusoidal
ridges. If more realistic terrain profiles and atmospheric structures are considered,
other linear solutions can be obtained that more strongly resemble observed mountain
waves. In this section, we will describe how the wave response is influenced by isolated
topography and vertical variations in atmospheric wind speed and stability.

Suppose that the mountain profile consists of a single ridge from which the terrain
elevation drops to some reference level at all distances sufficiently far upstream and
downstream. Just as Fourier series can be used to represent a wide variety of periodic
functions with an infinite sum of sines and cosines, the isolated mountain can, under
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rather general conditions, be constructed from periodic functions by the use of Fourier
transforms. Letŵ(k, z) denote the Fourier transform ofw(x, z) with respect to the
x-coordinate, and let̂h(k) be the Fourier transform of the topographyh(x).

Thek-th component of the Fourier transformed vertical velocityŵ(k, z) must sat-
isfy the Fourier transform of the governing equation (1),

∂2ŵ

∂z2
+

(
`2 − k2

)
ŵ = 0, (8)

which has the same form as (3). The lower boundary condition transforms toŵ(k, 0) =
iUkh0ĥ. WhenN andU are constant, the solution to (8), subject to the appropriate
upper and lower boundary conditions, is

ŵ(k, z) = ikUĥ(k) exp[i(`2 − k2)1/2z], k > 0. (9)

Equation (9) is just the complex analog of (4); each Fourier componentŵ(k, z) of the
transformed vertical velocity is identical to thẽwi forced by an infinite series of sinu-
soidal ridges having wavenumberk and amplitudêh(k). The solutions obtained in the
preceding section are therefore also applicable to the case of isolated topography. The
only complication arises from the requirement that after theŵ(k, z) are determined, the
total vertical velocityw(x, z) must be obtained by computing an inverse Fourier trans-
form. The relative weight attached to each individual wavenumber in the composite
solution is determined by the Fourier transform of the mountain.

Streamlines for steady linear flow over an isolated ridge of the form

h(x) =
h0a

2

x2 + a2
(10)

are shown in Fig. 2a for the caseN = .01047 s−1, U = 10 ms−1, andNh0/U = 0.6.
In this caseNa/U ≈ 10 and the dominant horizontal wavenumbers in the Fourier
transform of the topography satisfyk2 � `2, which eliminates the dependence of the
vertical structure on the horizontal wavenumber in (9). As a result, all modes associated
with these dominant wavenumbers have approximately the same vertical wavelength
(2πU/N = 6 km), so the streamline at 6 km approximately reproduces the mountain
profile while those at 3 and 9 km are roughly the mirror-image of the topography. The
solution shown in Fig. 2a is computed numerically without making the hydrostatic
assumption and is very similar to that which would be obtained in the hydrostatic limit,
in which all horizontal wavenumbers have exactly the same vertical wavelength and
the mountain profile is exactly reproduced by the streamline originating at the 6 km
level upstream.

As suggested by Fig. 2a, when an infinitely long ridge is sufficiently wide that the
flow is approximately hydrostatic (Na/U � 1) but still narrow enough that Coriolis
forces can be neglected (|f |a/U � 1, wheref is the Coriolis parameter), energetic
mountain waves are found only in the region directly above the mountain. In the gen-
eral case, the absence of wave energy in the region downstream can be deduced from
the horizontal group velocity for asteadytwo-dimensional wave in a mean flow with
U > 0,

∂ω

∂k
=

Nk2

(k2 + m2)3/2
, (11)
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Figure 2:Streamlines in steady airflow over an isolated mountain as predicted by linear theory
when (a)a = 10 km,N is constant, andNh0/U = 0.6; (b) a = 5 km,N is constant throughout
each of two layers such that between the surface and 3 kmNLh0/U = 0.6, and above 3 km
NUh0/U = 0.24.

which approaches zero in the hydrostatic limit (for whichk2/m2 → 0). A sufficient
decrease in the width of the mountain will lead to the generation of nonhydrostatic
waves with downstream group velocities, but large-amplitude lee-wave trains, such as
those shown in Fig. 2b, do not occur unless there are significant vertical variations in
the wind speed and static stability.

If the vertical variations inU andN are such that the Scorer parameter decreases
significantly with height, a cross-topographic flow may generate a qualitatively differ-
ent type of wave, thetrapped lee wave.A series of trapped lee waves (also known as
resonant lee waves) are apparent extending downstream from the ridge throughout the
layer0 ≤ z ≤ 4 km in Fig. 2b; a vertically propagating wave is also visible directly
above the mountain. The streamlines shown in Fig. 2b are for the linear solution to the
same problem considered in Fig. 2a, except thata = 5 km and the static stability above
3 km is reduced by a factor of 0.4. (The Brunt-Väis̈alä frequencies in the upper and
lower layers are thusNU = 0.004188 andNL = 0.01047 s−1, respectively.)

A necessary condition for the existence of trapped waves in the two-layer problem
is that

`2L − `2U >
π2

4H2
, (12)

where`U and`L are the Scorer parameters in the upper and lower layers, andH is the
depth of the lower layer. Equation (12) states that the difference in wave propagation
characteristics in the two layers must exceed a certain threshold before the waves can be
trapped. The horizontal wavenumber of any resonant lee wave in the two layer system
satisfies̀ L > k > `U , implying that the wave propagates vertically in the lower layer
and decays exponentially with height in the upper layer. As shown in Fig. 2b, trapped
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waves have no tilt, even though they can propagate vertically in the lower layer. The
reason for this is that wave energy is repeatedly reflected, without loss of amplitude,
from the upper layer and the flat ground downstream from the mountain. As a result, the
downstream disturbance is the superposition of equal-amplitude upward and downward
propagating waves, a combination which has no tilt.

Nonlinear Mountain Waves

Now suppose that the mountain height is not small compared to the vertical wavelength
of the mountain wave. IfN andU are constant, the streamline displacementδ(x, z)
in steady two-dimensional Boussinesq flow over such a ridge is still governed by a
relatively simple mathematical model known as Long’s equation

∂2δ

∂x2
+

∂2δ

∂z2
+

N2

U2
δ = 0, (13)

Although Long’s equation is a linear partial differential equation, it may be derived
from the fully nonlinear equations without making any linearization or small-amplitude
assumptions. Nevertheless, (13) may also be derived by assuming the mountain is in-
finitesimally high and linearizing the governing equations in the usual manner. When
N andU are constant, the only difference between the linear and nonlinear solutions
arises from the lower boundary condition, which requiresδ[x, h(x)] = h(x) in the ex-
act finite-amplitude case and is approximated byδ(x, 0) = h(x) in the small-amplitude
limit.

As one might guess from the similarities in the governing equations, whenN and
U are constant the influence of nonlinear dynamics on the wave structure is often rel-
atively minor. This similarity can be appreciated by comparing the linear solution
in Fig. 2a with the corresponding nonlinear solution in Fig. 3a, both of which show
streamlines in a Boussinesq flow for whichNh0/U = 0.6. Nonlinear processes
steepen the streamlines aroundz = 4.5 km, which is 3/4 of a vertical wavelength
(3λz/4) above the topography. Conversely, the nonlinear waves are less steep than
their linear counterparts nearz = 1.5 km, which isλz/4 above the mean height of
the topography. Despite these modest differences in the shape of the streamlines in
the linear and nonlinear waves, the wave amplitude is almost identical in both cases.
Nonlinear processes do not have a dramatic impact on the waves forced by flow over a
infinitely long ridge unless either (i) there are vertical variations inN andU or (ii) the
mountain is high enough to force wave overturning.

The influence of nonlinear wave dynamics on the flow in the two-layer atmosphere
previously considered in connection with Fig. 2b is shown in Fig. 3b. The amplitude
of the lee waves in the nonlinear solution is much larger than that in the linear solu-
tion, and in the nonlinear case some spatial variation is visible among the individual
troughs and crests in the region65 ≤ x ≤ 100 km. As suggested by this example, and
demonstrated in several observational campaigns and numerical studies, linear theory
does reliably predict the amplitude of trapped lee waves generated by finite-amplitude
mountains. The main shortcoming of linear theory is that it cannot capture the ten-
dency of the nonlinear dynamics to enhance the short-wavelength Fourier components
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Figure 3: As in Fig. 2 except that the streamlines are for a fully nonlinear flow as computed
using a numerical model. The trapped waves in panel b are not completely steady; the solution
is shown a nondimensional timeUt/a = 20 after starting the flow from rest.

in the low-level wave field over the lee slope. The nonlinear enhancement of these
short-wavelength flow perturbations often produces more forcing at the wavelength of
the resonant lee waves than does the direct forcing by the topographic profile itself.

Clouds that form in regions of net upward displacement in vertically propagating
hydrostatic waves may appear like the cloud in Fig. 4. The large single region of
cloudiness parallel to the mountain crest is probably formed by air parcel displacements
qualitatively similar to those in the streamline originating near the 6-km-level in Fig. 3a.
Clouds that form in trapped lee waves may appear as a series of long bands parallel to
the generating ridge. Such bands are often visible in satellite photos and are formed by
streamline patterns qualitatively similar to those originating in the layer between 2 and
4 km in Fig. 3b. Nevertheless, three dimensional variations in the upstream topography
often break these bands into the superposition of many lens shaped cloud masses, such
those shown in Fig. 5.

Returning to the discussion of how nonlinear dynamics modify the structure of
mountain waves, consider the influence of wave breaking on the flow. Two examples
in which the wave amplitude becomes large enough to overturn are shown in Fig. 6.
The case shown Fig. 6a is one with constantN andU identical to that in Fig. 3a, except
that the mountain height is increased so thatNh0/U = 1.2. (The vertical scale also
extends toz = 15 km). Wave overturning first begins at the3λz/4 level, which is the
same level at which the wave faces appear to be steepened in Fig. 3a. As the wave
begins to overturn, aλz/2 deep region of well-mixed stagnant fluid develops over the
lee slope and begins to extend downstream. A second region of wave overturning
eventually develops at a height of7λz/4, although the perturbations are weaker at this
level due to the dissipation experienced by the wave as it propagates through the first
wave-breaking level. Fig. 6 shows the solution at a nondimensional time (Ut/a) of
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Figure 4:Single lenticular cloud over Laguna Verde, Bolivia. This cloud was probably formed
by a vertically propagating mountain wave. (Copyright Bernhard Mühr, www.wolkenatlas.de)

30, by which time the near-mountain solution is quasi-steady, but the layers of well-
mixed fluid continue to expand further downstream. Also shown are contours of the
subgrid-scale eddy diffusivity. Regions in which the subgrid-scale diffusivity is large
are regions in which the numerical model has diagnosed the present of vigorous small-
scale turbulence such as that which occurs due to wave breaking.

Although the breaking of mountain waves in an atmosphere with constantN andU
has received a great deal of theoretical attention, the morphology of such flows is not
representative of most real-world wave-breaking events, in which the wave structure is
significantly modified by vertical wind shear in the upstream flow. Those ridges that
run north-south in the middle latitudes are oriented perpendicular to the climatological
westerly flow and are frequent generators of large-amplitude mountain waves. A pro-
totypical example of the mountain waves generated by such ridges in a deep westerly
flow is shown in Fig. 6b. The mountain profile, the surface wind speed (10 ms−1), and
the low-level stability (0.01047 s−1) are identical to those for the case in Fig 6a, but the
wind speed increases linearly to 25 ms−1 at a height of 9 km. The presence of a strato-
sphere is modeled by increasingN to 0.02 s−1 above 9 km and a linearly decreasing
U back to 10 ms−1 at z = 13 km. The wind speed is a constant 10 ms−1 above 10
km. The increase in the cross-mountain wind with height throughout the troposphere
decreases the local value of the nonlinearity parameterN(z)h0/U(z) to a minimum
just below the tropopause atz = 9 km. Above the tropopauseN(z)h0/U(z) increases
rapidly with height due to the factor-of-two increase inN and the reversal of the wind
shear. As evident in Fig. 6b, these more realistic vertical variations in the upstream flow



Lee Waves and Mountain Waves 10

Figure 5:Multiple lenticular clouds over Ḿyvatin, Iceland formed by trapped lee waves. (Copy-
right Georg M̈uller, www.wolkenatlas.de)

are sufficient to focus the primary region of wave-breaking in the lower stratosphere
(aroundz = 12 km) and to prevent wave-breaking in the troposphere.

The influence of wave-breaking is highly nonlocal. In the case with constantN and
U , the entire lee-side flow in the wave-breaking regime (Fig. 6a) is dramatically differ-
ent from that in the nonbreaking regime (Fig. 3a). In particular, the surface winds above
the lee slope are significantly enhanced in the wave-breaking regime (seedownslope
winds). The breaking waves in Fig. 6b also exert a nontrivial influence on the low-level
flow, although this influence is considerably less dramatic than that which develops as
a consequence of wave-breaking in Fig. 6a.

Vertical Momentum Transport

When air flowing over a mountain generates vertically propagating waves, a region of
high pressure develops upstream of the ridge crest and a region of low pressure appears
in the lee. The distribution of these pressure perturbations is revealed by the along-flow
variation in the spacing between the two lowest streamlines in Figs. 1b, 2a, 3 and 6.
The asymmetry in the pressure distribution across the ridge gives rise to a net pressure
force on the topography that tends to accelerate the topography in the direction of the
mean flow. An equal and opposite force is exerted on the mean flow by the topography.

To see how the topographically induced decelerative forcing is distributed through-
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Figure 6: Streamlines (solid) and contours of the subgrid-scale eddy diffusivity (dot-dashed,
at intervals of 20 m2s−1) for (a) the case shown in Fig. 3a except thatNh0/U = 1.2 and the
vertical scale extends to 15 km; (b) as in (a) except with westerly wind shear throughout the
tropopause and a realistic stratosphere (see text).

out the fluid, consider the horizontal momentum equation

∂ρu

∂t
+∇ · (ρuv + pi) = 0, (14)

in whichv is the total velocity vector,p is the pressure, andi is the unit-vector along the
x-coordinate. Integrate the preceding throughout the volume between the surfaceh(x)
and an arbitrary levelzt; use the divergence theorem; note that there is no advective
momentum flux through the lower boundary, and assume that the domain is periodic in
the horizontal, then

∂

∂t

∫ ∫ ∫
ρu dV = −

∫ ∫
ρuw dx dy

∣∣∣∣∣
z=zt

−
∫ ∫

p
∂h

∂x
dx dy

∣∣∣∣∣
z=h

. (15)

When vertically propagating mountain waves are present, the cross-mountain pressure
drag (given by the last term in Fig. 15) must decelerate the volume-averaged flow in the
layer between the surface andzt unless the pressure drag is balanced by a downward
transfer of momentum through levelzt. This same result can be obtained for flow
in nonperiodic domains under the assumption that the perturbation quantities vanish
at the lateral boundaries, although caution is advised when trying to apply (15) in a
nonperiodic domain because non-negligible mountain-wave induced perturbations may
extend far upstream and downstream from a very long ridge.

The interaction between the mean flow and the mountain-wave induced momentum
fluxes can be described more precisely by separating the dynamical variables into an
average over the domain (denoted by an overbar and taken as representative of the
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synoptic-scale flow impinging on the mountain) and the perturbation about that average
(denoted by a prime and assumed to represent the contributions from mountain waves
generated by the flow over the ridge). If the horizontal momentum equation for two-
dimensional inviscid Boussinesq flow,

∂ρ0u

∂t
+

∂

∂x

(
ρ0u

2 + p
)

+
∂

∂z
(ρ0uw) = 0, (16)

is averaged over a periodic domain (or if it is assumed that the perturbations vanish at
the lateral boundaries of a nonperiodic domain) and ifw = 0, one obtains

∂ρ0u

∂t
= − ∂

∂z

(
ρ0u′w′

)
. (17)

A decelerative forcing will therefore be exerted on the flow in those regions in which
the mountain-wave induced momentum flux is divergent, i.e., where∂(ρ0u′w′)/∂z >
0.

The vertical profile of the momentum flux is particularly easy to describe for steady,
inviscid, small-amplitude waves in a periodic domain (or in an unbounded domain in
which the waves decay asx → ±∞). The cross-mountain pressure drag in such waves
is identical to the vertical momentum flux atz = 0, as may been seen from from the
steady state version of (15) in the limitzt → 0. Furthermore, a classic theorem due to
Eliassen and Palm states that under the preceding assumptionsρ0u′w′ is constant with
height except at a “critical level” at whichu = 0. Mountain waves are dissipated at
the mean-state critical layers found in real atmospheric flows. Mountain waves are also
dissipated through breaking and overturning if they attain sufficiently large amplitude
due to the decrease in density with height or, as in Fig. 6, if they propagate into a region
in which the local value ofN/U increases significantly. Small amplitude mountain
waves that propagate all the way to the mesosphere without experiencing overturning
are damped by infra red radiation.

The Eliassen and Palm theorem implies that small-amplitude mountain waves trans-
port a fraction of the momentum of the cross-mountain flow downward to the surface
from those elevations at which the waves undergo dissipation. There will be no vertical
momentum flux divergence and no forcing of the mean flow within the those layers
of the atmosphere in which the waves are steady and nondissipative. The momentum
fluxed downward by the waves is transfered to the topography by the cross-mountain
pressure drag. Similar distributions of the vertical momentum flux are obtained even
when the waves are nonsteady and nonlinear. For example, the vertical momentum
flux profile associated with the finite-amplitude waves shown in Fig. 6b is approxi-
mately nondivergent between the ground and the region of wave-breaking in the layer
11 ≤ z ≤ 13 km. In contrast, the momentum flux profile is strongly divergent in the
wave breaking region, and the mean flow is subject to a significant decelerative forcing
throughout this layer (seewave, mean-flow interaction). Unlike surface friction, the
drag associated with mountain waves is typically exerted on the flow well above the
lower boundary. Numerical experiments with general circulation models suggest that
mountain-wave-induced drag plays a nontrivial role in the total momentum budget of
the atmosphere.
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See also:Buoyancy waves, Downslope winds, Lee Vortices, Wave mean-flow interac-
tion.

References

[1] P. G. Baines.Topographic Effects in Stratified Flows. Cambridge University Press,
Cambridge, 1995.

[2] D. R. Durran. Mountain waves. In Peter S. Ray, editor,Mesoscale Meteorology
and Forecasting, pages 472–492. American Meteorological Society, Boston, 1986.

[3] A. Eliassen and E. Palm. On the transfer of energy in stationary mountain waves.
Geof. Publikasjoner, 22:1–23, 1960.

[4] Adrian E. Gill. Atmosphere—Ocean Dynamics. Academic Press, Orlando, 1982.
662 p.

[5] James R. Holton.An Introduction to Dynamic Meteorology. Academic Press, San
Diego, third edition, 1992. 507 p.

[6] R. B. Smith. The influence of the mountains on the atmosphere. In B. Saltzman,
editor,Advances in Geophysics, volume 21, pages 87–230. Academic Press, 1979.


