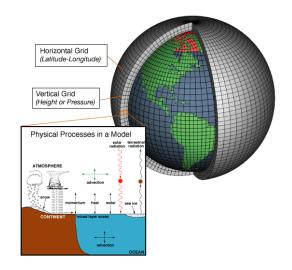
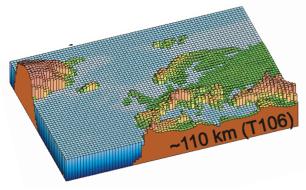
Climate changes (1900 to 2000) due to human activity HOW DO WE **KNOW THIS?** Likelihood that trend occurred in late 20th human contribution to observed tr<u>end^b</u> Phenomenon^a and direction of trend century (typically Warmer and fewer cold Very likely° Likely^d days and nights over most land areas Warmer and more frequent Vrtually certain > 99% hot days and nights over Very likely® Likely (nights)d most land areas Very likely >90% Warm spells/heat waves Likely >66% Frequency increases over Likely More likely than not most land areas More likely > 50% Heavy precipitation events. than not Frequency (or proportion of Likely More likely than not[†] total rainfall from heavy falls) increases over most areas Area affected by Likely in many More likely than not droughts increases regions since 1970s Intense tropical cyclone Likely in some More likely than not regions since 1970 activity increases Increased incidence of More likely than not! Likely extreme high sea level (excludes tsunamis)9 **IPCC 2007**


Climate Models

- · What is a climate model?
- · How long have they been around?
- How good are they?

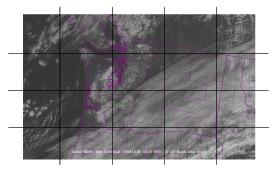
Climate Models


- What is a climate model?
 - Mathematical representations of the atmosphere, ocean, sea ice and land surface
 - For each component, the model is based on the laws of physics and chemistry. For example,
 - the models conserve energy, mass, momentum. They obey the laws of physics (e.g., F=ma) and chemistry
 - Radiation (solar and terrestrial) is based on detailed theory (quantum mechanics).
 - Concentrations of some gases are prescribed because they change very very slowly (N₂, O₂, Ar, CFCs, etc)
 - Other gases are sometimes prescribed and sometimes calculated by the laws of chemistry and thermodynamics
 - The equations are hopelessly complicated to solve by pen and pencil ("analytically"), so we solve them numerically
 - The equations can't be solved at a molecular level, so the climate system is chopped up regular chunks

Climate Models

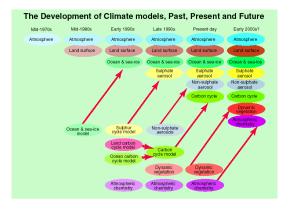
Climate Models

 The current size of a chunk of atmosphere, land, ocean or sea ice is about 150km x 150km


The vertical extent of a box is typically:
Atmosphere/Ocean: 80-500m Sea Ice: 50cm Land: 10cm

Climate Models

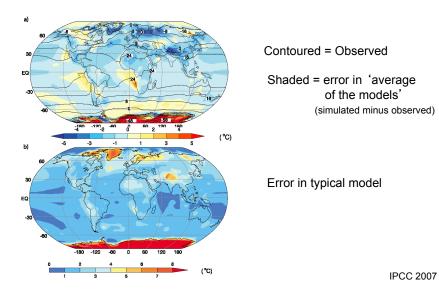
- Information in one chunk affects another because of motion
 - Wind (atmosphere)
 - Flow (ice, rivers, groundwater movement)
 - Currents (ocean)
- Motion, in turn, is due to pressure differences that result from temperature differences
- These calculations require enormous computer resources
 - For example, a 100 year run of a typical IPPC AR4 climate model takes
 - * Nine months on the world's fastest machines
 - * 150,000 Gbytes of disk space (minimal output)


Climate Models

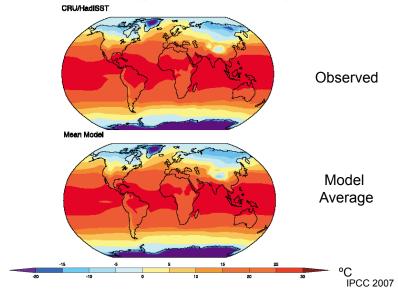
- The physical and chemical laws are solved in each of these chunks.
 - Within each chunk, there are things that are not explicitly modelled (e.g., clouds) but must be approximated ("parameterized") as a function of the average state of the chunk (e.g, the fraction of clouds in the chunk as a function of the chunk's temperature, pressure, wind, humidity)

Climate Models

- · What is a climate model
- · How long have they been around?



Climate Models are based on the laws of physics and chemistry, and used for ~40 years for various problems.


Climate Models

- What is a climate model?
- How long have they been around?
- How good are they?
 - Some examples from 14 of the 23 climate models used in the most recent IPCC report: Assessment Report #4 (AR4) in 2007.

Annual Average Surface Temperature

Annual Average Surface Temperature

