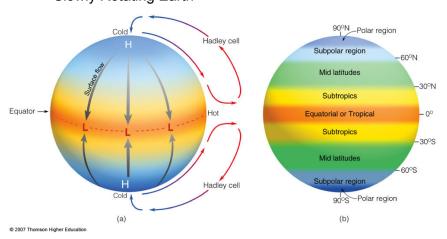

Midterm rough curve

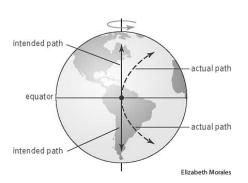
"General Circulation"

- More energy is absorbed in the tropics than is emitted to space.
- Less energy is absorbed in the polar regions than is emitted to space.



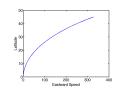
 As a result the tropics are warmer than the polar regions and the subsequent pressure gradients drive circulation that move the excess heat in the tropics to the poles

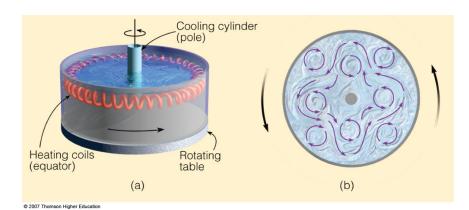
"General Circulation"


- Usually described as the long term (climatological) averaged flow for a month, season or year
- The gross aspects of the essential General Circulation can be explained by considering a rotating planet the size of Earth and with roughly the same GH gases, without worrying about continents and mountain ranges

Slowly Rotating Earth

Like a *large scale* sea-breeze (hot tropics/cold poles)


Idealized Model of Realistic Rotating Earth (24hrs)



The Equator-to-Pole Cell is broken because conservation of angular momentum creates large shear in the flow, which wobbles and creates storms

To conserve angular momentum, moving air at rest from the equator to Xo N or S would have to be moving eastward at ...

Latitude	Eastward Speed
Equator	0 m/s (540m/s as seen from space)
20°	58 m/s
45°	375 m/s

Watch the Movie
www.youtube.com/watch?v=lmNxEMv85IA

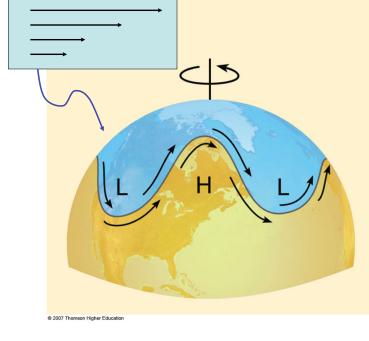
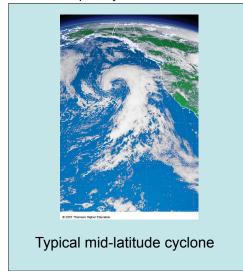
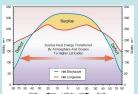
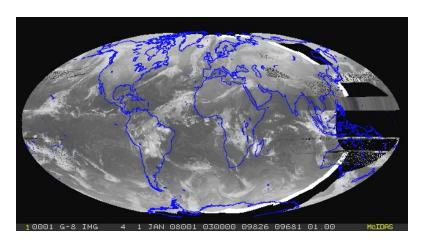
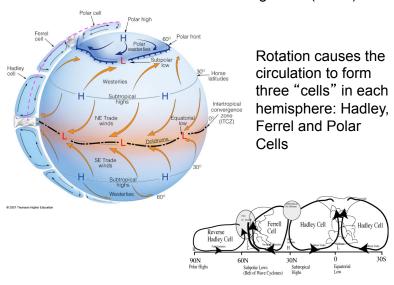




Fig. 3, p. 266

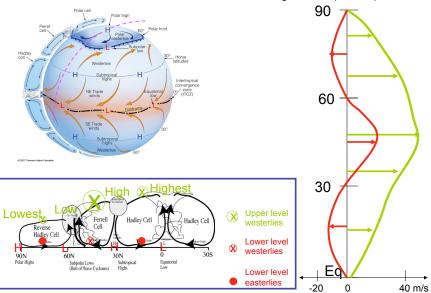
Storms like this one account for about 2/3 of the total heat moved from equator-to-pole by circulation



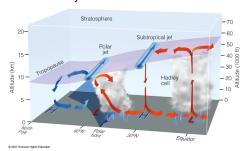
Hence, equator-to-pole differences in radiation give rise to equator-to-pole temperature differences and hence circulation.



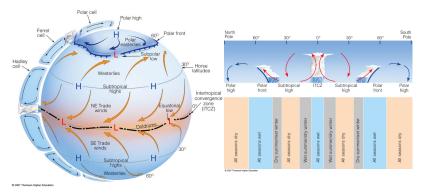
In turn, circulation moves excess energy from the equator to the poles (cooling the tropics and warming the poles)


IR Movie

Idealized Model of Realistic Rotating Earth (24hrs)

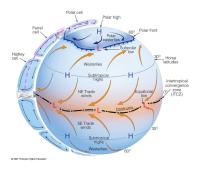


Idealized Model of Realistic Rotating Earth (24hrs)


Idealized model of the "General Circulation"

- Hadley Cell in tropics is similar to the land-sea breeze, but CF matters (why?)
 - Hence, surface flow is westward (easterly) at surface and eastward (westerly) aloft
- The largest north-south temperature gradients are in the midlatitude (between the tropics and the polar regions)
 - Hence, the largest equator to pole pressure gradient is in the midlatitude. Westerly JETS are located here

Idealized model of the "General Circulation"


- In general, there is rising motion in near the equator and at about 60° latitude, and sinking motion at 30° latitude and near the poles. Hence, the
 - deep tropics and 60° latitude are wet regions
 - subtropics (20-35° latitude) and polar region are dry regions

The Real World?

Idealized model of the "General Circulation"

- Near the surface, in general, there are
 - easterlies (Trade Winds) in the tropics and subtropics (25°S-25°N)
 - westerlies in the midlatitudes (30-60° latitude)
 - easterlies in the polar regions (60-90° latitude)
- Aloft (near the tropopause) there are westerlies everywhere, but strongest westerlies are in the midlatitudes

