Climate Engineering (aka Geoengineering)

- What is it?
- · Why do it?
 - Large changes ahead (including some unforeseen)
- How do we stop the climate from changing without reducing CO₂ emissions by climate engineering?
 - Take CO₂ out of the atmosphere (unlikely)
 - Reduce sunlight to counter increased CO₂ due to human activity
- · General pros and cons of climate engineering

Climate Engineering (aka Geoengineering)

- · What is it?
- · Why do it?
 - Large changes ahead (including some unforeseen)
- How do we stop the climate from changing without reducing CO₂ emissions by climate engineering?
 - Take CO₂ out of the atmosphere (unlikely)
 - Reduce sunlight to counter increased CO₂ due to human activity
- · General pros and cons of climate engineering

Climate engineering

"The intentional, large-scale manipulation of the environment." [David Keith]

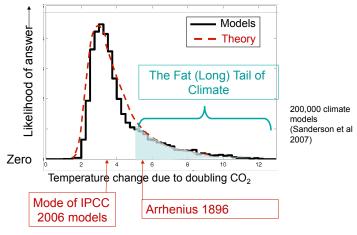
"The deliberate modification of Earth's environment on a large scale 'to suit human needs and promote habitability.'" [wikipedia.org]

Climate Engineering: a brief history

- 1974: Mikhail Budyko proposed injecting sulfur dioxide in the stratosphere to create sulfate droplets that would scatter sunlight and cool the earth:
- Early 1990's: Edward Teller* and collaborators proposed putting designer (nanotech) particles into the stratosphere to deflect sunlight.
 - *Father of the H-bomb, principal architect of Star Wars Defense Initiative, inspiration for Dr. Strangelove
- 1992: The National Academy of Sciences issues a detailed study on geoengineering options for avoiding climate change, which includes evaluation of the science and a cost-benefit analysis for each option.
- 2006: Paul Crutzen (Nobel Prize winner for his work on the Ozone Hole) re-discovers Budyko's plan. He argues persuasively that the scope and speed of climate changes due to increasing CO₂ -coupled with the lack of any progress on mitigation -- requires this geoengineering solution be seriously considered.

Climate Engineering (aka Geoengineering)

- · What is it?
- · Why do it?
 - Large changes ahead (including some unforeseen)
- How do we stop the climate from changing without reducing CO₂ emissions by climate engineering?
 - Take CO₂ out of the atmosphere (unlikely)
 - Reduce sunlight to counter increased CO₂ due to human activity
- · General pros and cons of climate engineering


Why must we consider Climate Engineering?

- To avoid large increases in atmospheric CO₂ requires huge changes in current technological systems (power, transport, buildings), creates winners and losers, and presents deep challenges to equity. A very tall order.
- The potential for unanticipated climate catastrophes
 - Sea level: the Antarctic ice shelves may become unstable; could raise global sea level abruptly by meters.
 - Temperature increase: methane released to atmosphere by melting permafrost could double atmospheric CO2.
- · The Fat Tail of Climate

Why must we consider Climate Engineering?

- The projected climate changes are large and fast enough to cause large disruptions and distress in the global economy, society and in the environment.
 - World food production: 20% reduction in global grain production by 2050 due to increased temperature alone
 - Ecosystem changes are underway: biodiversity is being lost at an unprecedented rate

The Fat Tail of Climate Sensitivity

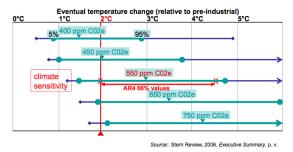
The fat tail means there is a 20% chance the response to increasing CO₂ will be at least twice as great as that projected by the consensus IPCC

The Fat Tail of Climate Sensitivity

Many influential, *mainstream* economists (e.g., M. Weitzman, L. Summers, Lord Stern) have concluded that we can not exceed an increase of 2-3°C in global temperature without catastrophic damages to the global economy.

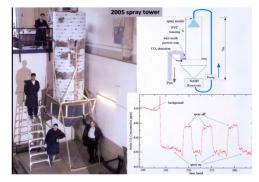
Prof. Marty Weitzman (H "among the most influential economic the world" and often stated as an upcoming recipient of the Nobel Prize in Economics "Climate change, at the fat tail, threatens to drive all of planetary welfare to disastrously low levels in the most extreme scenarios".

Prof. Lawrence Summers (Harvard) US Secretary of the Treasury (Clinton) Former Director, White House National Economic Council (Obama) Sir Nicholas Stern (LSE) Fmr Chief Economist, World Bank. Chair of the Stern Review of Economics of Climate Change


The Executive Summary of the Stern Review on the Economics of Climate Change is here: www.hm-treasury.gov.uk/sternreview_summary.htm

Climate Engineering (aka Geoengineering)

- What is it?
- Why do it?
 - Large changes ahead (including some unforeseen)
- How do we stop the climate from changing without reducing CO₂ emissions?
 - Take CO₂ out of the atmosphere (unlikely)
 - Reduce sunlight to counter increased CO₂ due to human activity (climate engineering)
- General pros and cons of climate engineering

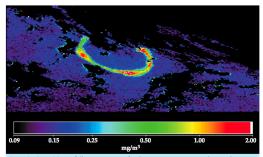

The Fat Tail of Climate Sensitivity

Many influential, mainstream economists (e.g., M. Weitzman, L. Summers, Lord Stern) have concluded that we can not exceed an increase of 2-3°C in global temperature without catastrophic damages to the global economy .

Unfortunately, the Fat Tail of climate sensitivity means even 500ppm is terribly risky.

Take CO₂ out of the air

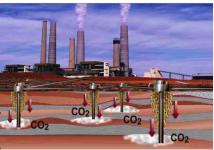
Source: David Keith, MIT talk, Sept. 16, 2008


Currently four ways to do this. None have left the prototype stage. All are projected to be astoundingly expensive

Take CO₂ out of the air (cont)

- · Stuff it into trees and make sure they don't rot
 - Requires management of organic material so it doesn't rot
 - Requires massive amount of land currently used for growing food to capture only a fraction of the required carbon

Take CO₂ out of the air (cont)


- Fertilize the ocean with iron (a limiting nutrient) to promote photosynthesis and thus remove CO₂ from the atmosphere
- Downsides:
 - All peer-reviewed published experiments to date show this doesn't work: after the phytoplankton grow they die, and most carbon goes right back into the atmosphere)
 - Major disruption to the base of the food chain (leading to changed ecology and often red tides)

Phytoplankton bloom following an iron-fertilization experiment in the Southern Ocean. The area covered spans about 1 degree of latitude and 2 degrees of longitude. Color scale indicates the mass of chlorophyll per cubic meter of seawater, mostly contained in phytoplankton. (Image provided by the NASA Goddard Earth Sciences Data and Information Services Center.)

Carbon Capture and Storage

The Wabash River Coal Gasification Repowering Project

Graphics courtesy of DOE Office of Fossil Energy

- Works for CO₂ emitted from coal, but not applicable to non-point sources (e.g., CO₂ emitted from oil)
- Makes energy from coal expensive compared to many other sources, including renewables.

What we did

Week 1 Introduction; Origin of the Earth's Atmosphere; Atmosphere composition today

Week 2 Heat and Temperature; Heat Forms and Transport; Radiation; Concepts in EM Radiation; Solar Radiation and the Earth; Albedo; Energy Balance

Week 3 Greenhouse gases and the Greenhouse Effect; Seasonal Temperature Cycles

Week 4 Cryosphere (guest lecture); Greenhouse Effect; two classes canceled due to snow

Week 5 Seasonal and diurnal temperature cycles; Pressure; Hydrostatic balance

Week 6 Coriolis effect and geostrophic wind; Jet streams; Midterm

Week 7 General Circulation of the Atmosphere; The Role of Mountains in Climate; The Role of the Ocean in Climate

Week 8 Ice Ages and how we know they happened; Milankovitch theory

Week 9 Human Induced Changes in Greenhouse Gases and their Impact on Climate (the 20th Century); Climate models; Natural and forced variability

Week 10 Projected Climate Change (today to 2100 and beyond); Warm climates; Geoengineering

1/3

., 0

2/3

Block enough sunlight to cancel warming due to increasing CO₂

- Solar reflectors placed in outer space at a point where the gravitational field from the earth cancels that from the sun
 - Downside:
 - · Launch alone cost ~10 trillion dollars
 - Once in place, impossible to remove. If they fail, it will take many years to replace them (and without the shading, the climate would warm dramatically)
- · Mirrors orbiting the earth to reflect sunlight
 - Downside: Very expensive, a nightmare for space navigation, impossible to retrieve

Block enough sunlight to cancel warming due to increasing CO₂

- Place tiny particles in the stratosphere that reflect visible sunlight but don't absorb infrared radiation
- Nature does this ever so often: launching sulfur dioxide into the stratosphere that turns into sulfate particles
 - Particles reflects sunlight and cool the planet
 - Particles fall out after a year or two
- Upsides:
 - We know it works to cool (volcanoes do it)
 - Its cheap (~10 B\$ per year)

Block enough sunlight to cancel warming due to increasing CO₂

The controlled enhancement of the the albedo and longevity of low-level maritime clouds

Cheap: 2-4 B\$US/year

- 3000 wind-powered ships
- Shoot a spray of very fine sea water into the clouds, making the cloud droplets smaller and thus more reflective of sunlight
- Basic idea: reduce uptake of solar energy by the oceans
- Approach works best in pristine (ocean) areas
- Downside:
 - clouds are the weak link in understanding climate change
 - Ocean continues to acidify
 - Once you start, you can never stop

Possible (unproven) option for getting 10Mt of sulfur aerosols in stratosphere each year

- Artillery: shooting barrels of particles into stratosphere with 16" lowa Class naval guns
 - Three guns firing twice per minute for 10,000 yrs
 - Barrels replaced every 100 mins
 - "...surprisingly practical" (NAS 1992) (cost about 10B, or 0.1% of US GDP)

Blackstock et al 2008

The prototype plan for R&D, testing and deployment

Novim Study Group Report CLIMATE ENGINEERING RESPONSES TO CLIMATE EMERGENCIES Study Group Meeting: August 10 to 15, 2008 Report Publication: DRAFT 3.4 (December 2, 2008) Study Group Participants: Jason J. Blackstock, David Battisti, Ken Caldeira, Douglas M. Eardley, Jonathan I. Katz, David W. Keith, Aristides A. N. Patrinos, Daniel P. Schrag, Robert H. Socolow and Steven E. Koonin *Report Lead Authors** Study Group Conventor Table of Contents EXECUTIVE SUMMARY. PRELUDE: THE CONTEXT OF THE "SHOULD" DEBATE ABOUT CLIMATE ENGINEERING RESEARCH. IV PREFACE. VI A NOTE ON CONFLICTS OF INTEREST. VII STUDY GROUP PARTICIPANTS. VII 1 INTRODUCTION AND CONTEXT. 1.1 The POSSBELITY OF CLIMATE EMERGENCIES. 1.2 CLIMATE EMORRHOM OS A POTINITAL—BUT UNCERTAIN—RESPONSE TO CLIMATE EMERGENCIES. 1.3 REDUCING THE UNCERTAINTIES: THE FOCUS AND LIMITED SCOPE OF THIS STUDY. 2	Theoretical Physics, Provost Callech, Chief Scientist BP, US Secretary of Energy, now US Govn R&D for National Security
---	--

... has been delivered to the Pentagon

Climate Engineering (aka Geoengineering)

- What is it?
- · Why do it?
 - Large changes ahead (including some unforeseen)
- How do we stop the climate from changing without reducing CO₂ emissions by climate engineering?
 - Take CO₂ out of the atmosphere (unlikely)
 - Reduce sunlight to counter increased CO₂ due to human activity
- · General pros and cons of climate engineering

Block enough sunlight to cancel warming due to increasing CO₂

· Downsides:

- It is cheap: many individual countries could do it
- Milky sky (impact on biology and agriculture unknown)
- Climate response doesn't exactly cancel the CO2 response. For example:
 - it will probably enhance the likelihood that the Antarctic ice sheet becomes unstable)
 - · Global precipitation decreases
 - Ocean continues to acidify (disrupting the base of the food marine chain)
- Once you start, you can never stop

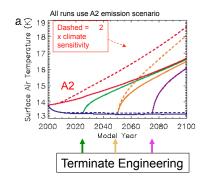
General arguments for doing climate engineering

- Reducing CO₂ emissions is a Herculean political, social, economic and technological feat. Our present efforts have fallen far short of what is required to stabilize and reduce CO₂ to avoid large, unprecedented changes in climate that are very likely to have serious deleterious impacts on the global economy, society and the environment.
- Increasing greenhouse gases may cause climate changes that create climate emergencies: impacts that are not presently deemed likely or were not anticipated, but that have dire consequences.

General arguments against doing climate engineering

(including sun shading by stratospheric aerosols)

- · The ocean will continue to acidify
- · Technology is still in its infancy
 - We have a large community of scientist and ~50 years of experience on the global warming problem (with modest progress on reducing uncertainty)
 - A handful (10-20) of scientist have spent ~5-10 years thinking about what might happen if we deploy a particular climate engineering solution. The science is in its infancy, and all of the work being done in the US is funded by private sources.
- The climate system is inherently complex and the possibility of "[unanticipated] harmful side effects" is too large for any intentional human intervention to ever be considered safe.
- Even when emissions of CO₂ go to zero, we will have to continue to deploy the aerosols until the CO₂ returns to a safe level (~1000 years)
- · Once you start, you can never stop.


Profound and unaddressed issues associated with climate engineering

- Who decides if it should be deployed, and at what level? Who decides if it should be stopped?
 - What if a country that would benefit decides to do it on its own, even though it harms another country?
- There are important cultural, ethical, legal, political and economic implications of climate engineering. How will they be balanced?
- · Moral hazard:
 - If we have an alternative solution to carbon management, we will be less inclined to pursue efforts to reduce carbon emissions
- We can't rule out unanticipated harmful and perhaps irreversible consequences (e.g., CFCs and the Ozone Hole)

General arguments against doing climate engineering

(including sun shading by stratospheric aerosols)

Stopping either deliberately (an adverse side-effect is discovered, or a terrorist act) or unintentionally (loss of capability, political will) will result in disaster.

- If sun shade technology is deployed to cancel warming due to large increases in CO₂, then a temporary failure in deployment (unintentional or not) would cause the planet to warm greatly and catastrophically
 - e.g., 1-4C in 10 years (cf. 20th century at 0.09 C/10 yrs, or nature at 4C/10,000 yrs)

Calderia and Wood 2008

WILL CLIMATE ENGINEERING HAPPEN?

- It is incredibly easy and (in the short term) inexpensive compared with reducing emissions and transitioning to a noncarbon emission economy
 - Cost is ~10B/yr compared to ~200B/yr to reduce carbon emissions
 - Cost is less than 0.1% GDP for US, less than 2%for about 30 countries
- Players who are currently influential and have a lot to lose if greenhouse gas emissions are limited/reduced (oil and gas companies, libertarians) don't loose from climate engineering
- Whoever holds the contract for CE solution has huge influence and unlimited profits for a millennium
 - E.g., Projects are already being develop by the major defense contractors and venture capitalists, including some of the richest people in the world

Video resources on climate engineering

- David Kieth's TED talk:
 - http://www.ted.com/talks/ david_keith_s_surprising_ideas_on_climate_change.html
- The recent MIT conference on climate engineering

http://web.mit.edu/esi/symposia/symposium-2009/symposium2009-presentations.html

I particularly enjoyed the talk by Prof Layzer, "What's the "Rational" Choice?: Risk, Values and the Politics of Geoengineering"