

Geologic Evidence For the Ice Ages

- Moraines, eratics, pollen records, etc
- Ocean sediments
 - Oxygen Isotopes in shells of organism in deep sea provide evidence of glacial ice amount
 - Waxing and waning of ice corresponds to changes in insolation (orbit around sun)
- Ice core records
 - Oxygen isotopes record local temperature
 - Air bubbles provide record of CO₂ and other gases
 - Remarkable correlation between local temperature and CO₂
- · Cause of glacial cycles
 - Trigger involves changes in summer insolation in northern hemisphere due to orbital changes
 - Ice-albedo and water vapor feedbacks are important
 - CO₂ is coordinated with the changes in ice volume, but it is a minor feedback to the Ice Ages (mainly responsible for SH cooling)

What does an ice age look like?

Last Glacial Maximum Conditions

- Ice sheet extent:
 - Over Canada, this ice sheet was up to 5 km thick
 - Global sea level was **125 meters lower** than today!
 - Greenland 25°C colder, tropics 4°C colder

Last Glacial Maximum

Present

Vocabulary: Isotopes

an atom (or element) is defined by number of protons H(1), C(6), O(8), Pb(82)

atomic mass: number of protons plus neutrons

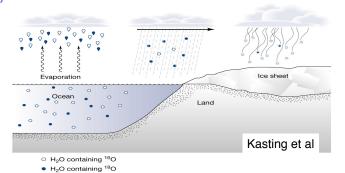
H normally 1+0=1

C normally 6+6 = 12

O normally 8+8 = 16

isotope: same element, different atomic mass >> that is, different number of neutrons

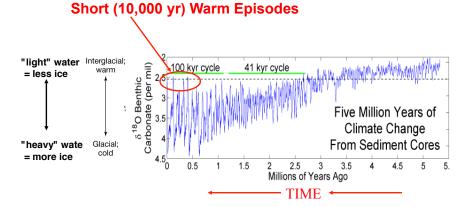
¹H (normal), ²H (deuterium), ³H (tritium; radioactive)


¹²C (normal), ¹³C, ¹⁴C (radioactive)

¹⁶O (normal), ¹⁸O

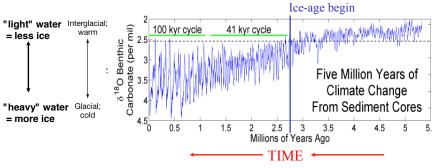
Isotopic Evidence

 $^{16}\mathrm{O}$ vs $^{18}\mathrm{O}$ "light" "heavy" (normal)


- · evaporation selects for "light"
- condensation (precipitation) selects for "heavy"

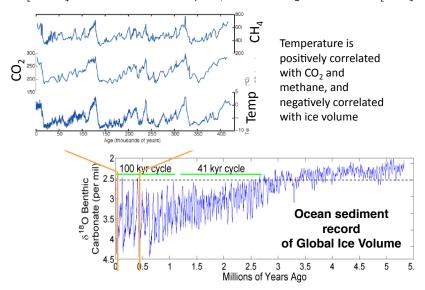
¹⁸O in ocean sediments records glacial ice volume: More "light" water in ice-sheets means remaining ocean water is "heavier".

¹⁸O in ice-cores indicates local temperature: Colder conditions means more precipitation en route so "lighter" snow.

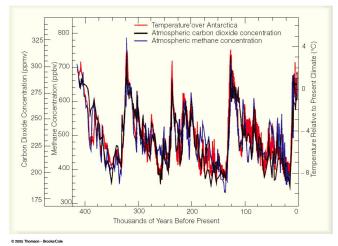

3 Million Year Record of Global Ice Volume

Kasting et al

3 Million Year Record of Global Ice Volume

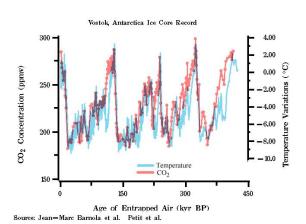

Oxygen Isotope Concentration in Shells of Organisms Growing in the Deep Ocean

- Early on, 40,000 year cycles dominated
 - Obliquity having a direct effect
- More recently, 100,000 year cycles have been most prevalent


CO₂*, CH₄* and Temperature in Vostock Antarctica

*CO₂ and CH₄ are well mixed in the atmosphere, so this is also a global record of CO₂ & CH₄

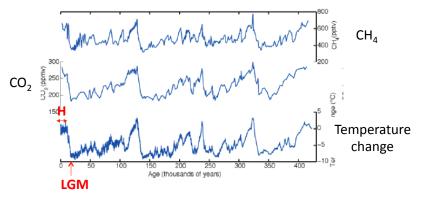
CO₂*, CH₄* and Temperature in Vostock Antarctica


*CO₂ and CH₄ are well mixed in the atmosphere, so this is also a global record of CO₂ & CH₄

Temperature is positively correlated with CO₂ and methane, and negatively correlated with ice volume

CO₂* and Temperature in Vostock Antarctica

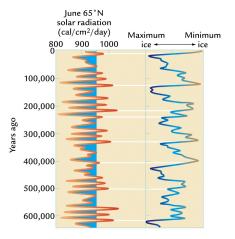
*CO₂ is well mixed in the atmosphere, so this is also a measure of CO₂ everywhere



Temperature is highly correlated with CO₂ (and negatively correlated with ice volume)

LGM $CO_2 = 180$ ppm, preindustrial $CO_2 = 280$ ppm, current $CO_2 = 392$ ppm)

Changes in temperature/ice extent lead CO₂ changes slightly


CO₂*, CH₄* and Temperature in Vostock Antarctica

- Starting about 1,000,000 yrs ago, roughly 100,000 year cycles
 - Much more rapid warming, slow & steady cooling
 - Most recent glacial period terminated at the "Last Glacial Maximum" (LGM), 20k yrs ago
 - Holocene (H) started ~ 10k yrs ago

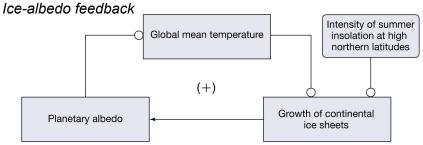
Theory of the Ice Ages:

Orbital induced insolation changes and global ice volume

"Strong summer insolation peaks pace rapid deglaciation"

Brief History of Orbital Theory of the Ice Age Cycles

- Agassiz (1840)
 - Summarized geologic evidence for an ice age
- Adhemar (1842)
 - First to attribute an ice age to orbital changes of Earth around Sun
 - Highlighted precession and # of hours of daylight
- Croll (1864)
 - Postulated less winter insolation was key to having an ice age: high eccentricity & winter hemisphere near aphelion promoted ice accumulation
 - Theory dropped when prediction of timing of glacial conditions didn't match evidence
- Milankovitch (1911)


Reasons for Glacial Cycling

- Changes in solar input in the NH summer drive the ice age cycles (Kopen, Milankovitch)
 - Reduced summer insolation would mean less winter snow melt
 → would eventually grow ice sheets
 - Increased summer insolation → more snow melt → easier to shrink ice sheets
 - N. Hem. matters more b/c there's more land there
- Albedo and CO₂/methane are positive feedbacks
 - Play important role in setting amplitude of changes

Milankovitch (1911)

- Koppen suggested to M. that summer insolation was the key to the ice ages
 - Winter: too cold to get much accumulation
 - Summer: low-insulation summers produce less melt in Fall and Spring, allowing winter snow to persist.
- M. calculated summer insolation at 65N vs time
- At the time, proxy data did not support predicted timing of glacial vs interglacial conditions
- New data from ocean sediment cores (and new data methods) clearly showed the ice ages went in cycles, and matched pretty well with summer insolation at 65N

Orbital Theory: Trigger and Feedback Mechanism

Trigger with feedback causes ice-sheets...

to grow and keep growing

or

to melt and keep melting

- Other feedbacks are needed to explain the magnitude of the changes.
- Greenhouse gases (e.g. CO₂ and CH₄) seem to be involved.