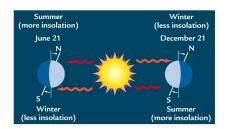

Orbital Theory: Trigger and Feedback Mechanism

Trigger (change in insolation) with feedback causes ice-sheets...
to grow and keep growing

٥r

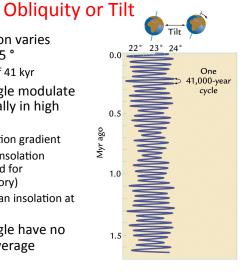

to melt and keep melting

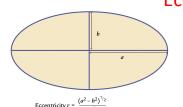
- Other feedbacks are needed to explain the magnitude of the changes.
- Greenhouse gases (e.g. CO₂ and CH₄) seem to be involved.

Orbital Variations and Insolation Obliquity or Tilt

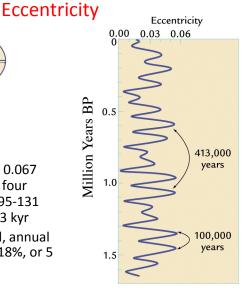
- Tilt angle is presently 23.44°
- Tilt is the main reason why we have large seasonal cycles in midlatitudes and polar regions
- Variations in tilt angle have no impact on global average insolation

Ice Albedo Feedback


- Probably important for the climate changes in the northern hemisphere during ice age cycles
 - Ice sheets that extend far south into the northern UW reflect significant sunlight (change the planetary albedo from 0.30 today to 0.32 at the LGM)
- Contrary to popular belief, ice-albedo feedback is not important for for understanding how climate will change over the next millennium due to increasing greenhouse gases

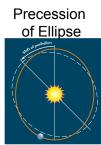

Orbital Variations and Insolation

• Tilt of axis of rotation varies from 22.5 ° and 24.5 °


- Dominant period of 41 kyr
- Variations in tilt angle modulate seasonality, especially in high latitudes
 - North-south insolation gradient
 - Winter & summer insolation anticorrelated (good for Milankovitch's theory)
 - Impacts annual mean insolation at a given latitude
- Variations in tilt angle have no impact on global average insolation

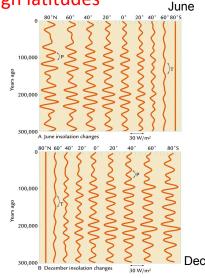
Orbital Variations and Insolation

- Eccentricity $e = (a^2 + b^2)^{1/2}/a$
- e varies from 0.000 to 0.067 (currently 0.017) with four periods ranging from 95-131 kyr (100kyr) and at 413 kyr
- Slight change in global, annual average insolation (0.18%, or 5 Wm⁻²)

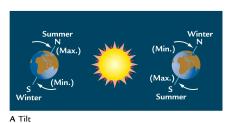

Orbital Variations and Insolation:

Precession

- Precession of Equinoxes is due to:
 - Wobble of Earth's axis of rotation around a line perpendicular to the Earth-Sun plane (21-26kyr)
 - Precession of the ellipse in absolute space
- Affects which calendar day the Earth is closest/farthest from the Sun
- Modulates amplitude of seasonality at all latitudes, especially in the tropics
- No effect on the annual mean insulation (anywhere)



Orbital Variations and Insolation

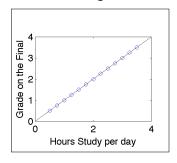

Tropics vs. High latitudes

- In the tropics, seasonal insolation changes are predominately due to changes in precession (23kyr)
- In the high latitudes, seasonal changes in insolation are due to both tilt (41kyr) and precessional (23kyr) changes

Orbital Variations and Insolation: Phasing of Hemispheric Insolation

- Tilt changes causes changes in summer insolation that are in phase between the hemispheres. Ditto for winter.
- Precession changes causes changes in summer insolation that are out of phase between hemispheres. Ditto for winter

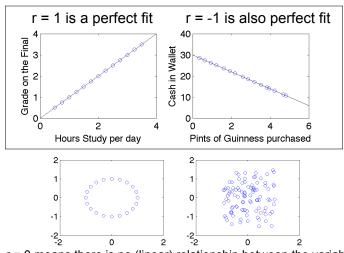
Summer Winter (Max.) N (Max.) N (Max.) N (Max.) S (Min.) S Summer


B Precession

Summary: orbital changes on insolation

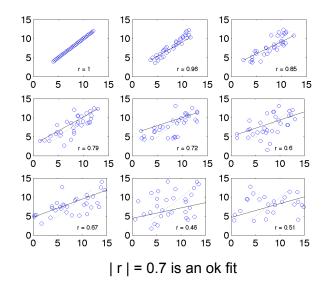
- Amplitude of the seasonal cycle of TOA insolation:
 - $-\,$ For reference, today the seasonal cycle is +/- 150Wm $^{-2}$ in the midlatitudes, and +/-15 Wm $^{-2}$ in the tropics
 - The net effect of orbital changes on *seasonal* insolation is $^{\sim}$ +/- 30 Wm $^{-2}$ in the midlatitudes and in the tropics.
 - Precession (23kyr) dominates in the tropics; Precession and tilt (41kyr) affect the high latitudes.
- Within a hemisphere: tilt and precession cause insolation changes in summer that are out of phase with those in winter (double whammy on ice volume).
 - Hemispheric Synchroneity:
 - Tilt causes changes in summer insolation that are in phase between hemispheres. Ditto for winter
 - Precession causes changes in summer insolation that are out of phase between hemispheres. Ditto for winter
- Only eccentricity can change the global, annual average insolation (by about .18%, or 5 Wm ⁻²).

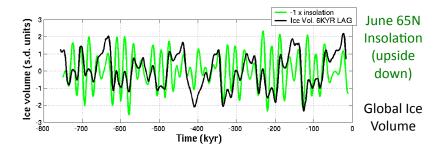
Tool: Correlation Coefficient (r)...


a measure of the goodness of a linear fit between two variables

r = 1 is a perfect fit

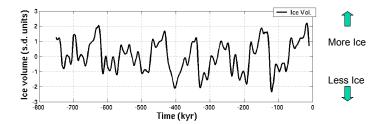
Tool: Correlation Coefficient (r)...


a measure of the goodness of a linear fit between two variables


r = 0 means there is no (linear) relationship between the variables

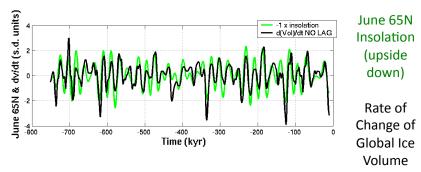
Tool: Correlation Coefficient (r)...

a measure of the goodness of a linear fit between two variables


Ice Sheet Growth versus High Latitude Solar

- maximum correlation of -0.4
 with a 6 kyr lag of ice volume behind insolation
 (e.g., low insolation is followed by increased ice)
- more ~100 kyr variability in ice volume than in insolation

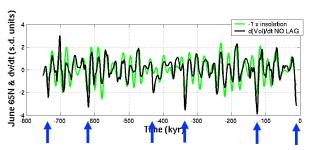
Roe 2005


The ice volume time series

- the fraction of ¹⁸O to ¹⁶O in the shells of organisms preserved in deep sea sediment cores is proportional to ice volume
- Composite stack from ~ 20 sediment cores

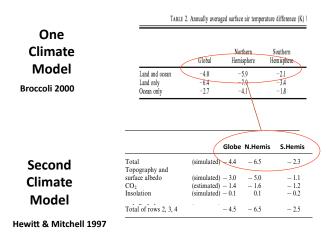
Imbrie et al., 1984

Ice Sheet Growth versus High Latitude Solar


• Rate of change of ice volume is more directly related to high latitude NH summer insolation:

Correlation of -0.8 (at zero lag)

Roe 2005

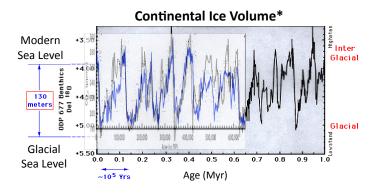

Rate of change of ice volume

 Rate of change of ice volume more directly related to high latitude insolation

- Terminations coincide with insolation maxima - points to insolation trigger
- Major difference is large negative rates of ice change during major deglaciations

Surface Air Temperature: LGM minus Today

What do climate models say?

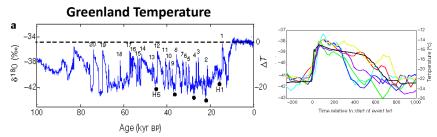

- Run a climate model (more later) using modern day forcing:
 - 360 ppm CO₂, today's insolation, today's land ice distribution, etc.
- Run a climate model using forcing associated with the Last Glacial Maximum (about 23 kyr ago):
 - 200 ppm CO₂, insolation and land ice distribution for 23kyr BP, etc.
- Take the difference (annual averaged over many years)

Ice Age Cycles: Some big solved problems

- Current climate is not the only possible one for Earth
 - indeed, glacial conditions seem to be preferred for the past 3Myr
- The ice Age Cycles wax and wane due to changes in the way the Earth Orbits the sun
 - Global climate and CO₂ are intimately intertwined, but CO₂ is acting as a feedback and not the driver of ice age cycles
- A change in global-mean surface temperature of about 4-5C is a massive climate shift
- If the orbital parameter theory is right, small triggers can produce major climate changes under some conditions

The Ice Age Cycles: Some big unsolved questions

• Why is CO₂ so highly correlated with ice volume?



*Oxygen Isotope composition of benthic organisms preserved in ocean sediment cores

Abrupt Climate Change during the Last Glacial Period

During Glacial stages, the climate system featured large rapid rearrangements.

Dansgaard/Oeschger (D/O) events show:

- Rapid onset of warming at Greenland (10 K in <30 years!)
- Long-lived (~ 200 600 years) warm period, followed by slow decline back to cold conditions

The Ice Age Cycles: Some big unsolved questions

- Why is CO₂ so highly correlated with ice volume?
 - Simple but incomplete answer: colder water can "hold" more CO₂
- Are changes in CO₂ important for the ice ages?
 - They provide a weak positive feedback in the NH
 - What about the SH? Temperature at Vostok is ~ in sync with NH ice volume. But is ice volume in the southern hemisphere correlated with ice volume in the northern hemisphere throughout the ice ages?
- What causes the major deglaciations?
 - Much more ice is lost in the terminations of an ice age than would be expected by simple increases in summer insolation.

Abrupt Climate Change during the Last Glacial Period

THE DAY AFTER TOMORROW IN THEATRES WORLDWIDE 28 MAY 2004

- Very likely due to changes in the atmosphere and ocean centered in the North Atlantic (Nordic Seas)
- All current ideas for the cause of abrupt changes require Ice Age conditions
- There is no reason to expect "abrupt climate changes" due to increasing greenhouse gases