2. Examples of Natural Variability
El Nino/Southern Oscillation (ENSO)

» EI Nino/Southern Oscillation(ENSO) is the dominant pattern of
climate variability on year-to-year time scales
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+ The physics responsible for ENSO are localized in the tropical
Pacific, but ENSO causes global climate anomalies

ENSO

There is a tight coupling between the atmosphere & ocean
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Changes in the distribution of sea surface temperature are coordinated with

changes in atmospheric circulation and rainfall patterns
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Color maps show
local correlation with
Nino3.4 -- a good
index of the state of
ENSO
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ENSO
» EI Nino is the warm phase of ENSO

— The tropical pacific ocean is warmer than usual; rainfall moves

from the western Pacific to the central Pacific
* La Nina is the cold phase of ENSO

* El Ninos
— occur every 3-7 years or so and last about one year

— EINino is usually followed by one year of La Nina conditions

» The state of the tropical Pacific (ENSO) is predictable up

to one year in advance

— For example, the average skill for a six month forecast is about

0.85 (perfect forecast =1, no skill =0)

+ ENSO causes the global average temperature to change

by +/- 0.15°C



ENSO affects the global climate through

atmosphere and ocean teleconnections The impacts of ENSO
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Anomalies during El Nino: the “warm phase” of ENSO
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+ ENSO alters the climate on a global scale. For example, ENSO impacts
— Rainfall in Indonesia (correlation 0.7)

— about 1/4 of the variability in wintertime temperature and storminess in the
western US

Upper level circulation changes — the probabilities of extreme weather events on a global scale

Current Tropical Pacific Ocean

. Most recent El Nino Forecasts
Temperature Anomalies

Mid-Feb 2012 Plume of Model ENSO Predictions
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Historical Impact of ENSO on the US

http://www.cpc.ncep.noaa.gov/products/precip/CWIlink/MJO/enso.shtml
Temperature in January - March (in C)

ANOMALIES FREQUENCY

El Nino

—38-3.3-27-21-15-08-03 03 08 15 2 L7 >3 39 W 10 3 40 % N S 80

La Nina

—38-33-27-21-15-08-03 03 08 15 1 %7 >3 39 W 120 3 40 % N S 60

Historical Impact of ENSO on the US

Snowfall in January - March (in inches)
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Historical Impact of ENSO on the US

Precipitation in January - March (in mm)
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Historical Impact of ENSO

Precipitation in December — February

Regression(mm/ day)
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Forced Change: Natural

Volcanoes

Emit sulfur dioxide into atmosphere

The most explosive eruptions can loft sulfur dioxide
20-30km -- into the stratosphere, where it turns into
sulphate particles (aerosols)

Once in the stratosphere, the winds distribute the
sulphate aerosols globally

The smallest particles fall-out in one or two years

Climate Impact:

— Small sulphate particles reflect radiation in the visible band;
hence they reduce the insolation arriving at the surface

— This causes a cooling of the planet -- as much as 0.5C --
that can last for up to two years
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Climate Variability and Climate Change

1. Definitions
* The Climate System; Natural and Forced Variability

2. Natural Variability
¢ North Atlantic Oscillation, El Nino/Southern Oscillation

3. Forced Change (natural)
» Volcanic Eruptions (scattering particles)
+ Changes in the Solar Luminosity

4. Forced Change (human)

» Burning of fossil fuels (increasing GH gases)
* Burning of biomass (scattering particles)
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" resulted in a reduction iriscﬁatian (sunlight) reaching
the surface of 2-3 W/m? for about a year



_ The impact of Mount Pinatubo eruption: Model vs Observations
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The impact of Mount Pinatubo eruption: Precipitation Major Volcanic Eru ptions in the past
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Mount Pinatubo also caused about 5% less global

averaged precipitation Estimates from two different groups
Trenberth and Dai 2007 IPCC 2007 Fig 2.18



Volcanic Eruptions and Global Temperature Major Volcanic Eruptions in the past
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temperature time series duplicated from Fig. 1. The solid vertical lines
denote volcano eruption dates: from left to right, Mts Krakatoa, Santa Maria,
Agung, El Chichén and Pinatubo. The dashed vertical line denotes the
month of August 1945. Vertical axis shows temperature anomalies;

tickmarks indicate steps 0 0.5 °C. Estimates of forcing amplitude are highly uncertain because
amount and size of aerosol lofted is only crudely estimated

» Suggestion that the typical large volcano can cool the
planet by ~0.2°C for about a year or so
Thompson et al 2008 IPCC 2007 Fig 6.14

Climate Variability and Climate Change

1. Definitions
» The Climate System; Natural and Forced Variability

2. Natural Variability

* North Atlantic Oscillation, El Nino/Southern Oscillation

3. Forced Change (natural)
» Volcanic Eruptions (scattering particles)
» Changes in the Solar Luminosity

4. Forced Change (human)
* Burning of fossil fuels (increasing GH gases)
» Burning of biomass (scattering particles)



Forced Change: Changes in the Sun’s
output

* Sunspots are associated with a small increase in
energy coming from the Sun
— Sunspot numbers vary (11 year cycle, and other poorly
understood time scales)
» Direct estimates of the change in insolation since
1978
— The solar constant varies by +/- 0.05% over the sunspot
cycle, or about +/- 0.5W/m2, or about +/-0.125 W/m?
averaged over the whole Earth
» Changes are too small to explain correlated variability
in global temperature (so proponents of solar forcing "one of the most powerful
offer exotic ideas -- often involving cosmic rays and solar flares in years...
clouds -- to amplify the impact): erupted from sunspot 486."
— Expect ~0.05°C changes in global temperature

www.spaceweather.com
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Direct measurements of Solar luminosity since 1978 Sunspot cycle #22



Sunspot observations

25 BC: First sunspot records in China
1611: Sunspots discovered by Europeans (with telescopes)
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An image of the region around a sunspot. The mottied appearance
is due to turbulent eruptions at the surface of the sun.

Sunspot drawings by Christoph Scheiner from his book Rosa Ursina.

Sunspot Evolution

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

90N SUNSPOT AREA IN EQUAL AREA LATITUDE STRIPS (% OF STRIP AREA) H>00% B>01% [1>1.0%

208
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 19%0 2000 2010
DATE

05 AVERAGE DAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)

s 1l

03 |

0.2 H

0.1 —

0.0
1880 1890 1900 1910 1920 1930 1930 1960 1970 1980 1990 2000

1940
DATE

NASA/NSSTCHATHAWAY 2004711

Cycle is on average 10.55 yrs (range is 9 to 14 yr)

How to view sunspots

Johannes Hevelius observing with one of his telescopes (1847).

Sunspot Numbers

Yearly Averaged Sunspot Numbers 1610-2000

200 :
I
£ | | | h_
Z:wo\ A ‘M‘\ U“\ “ \“Hw"w
AN PN Y N T
@ [ \ ( f o |
s | \ |I‘ i ‘\H“\“ c'\\“Lu“\ Valh w MATY \“MH
A - | “}U““ \ N ‘H\g‘-‘\\j\\\\“‘M\‘\‘\‘w\‘\;‘
VL Nl AR RAYETAVARAVATAIRIRIRIRIR]
. ‘FJ“‘; . "H\ I \J U VoV R \\‘\ ‘L“ \ “‘J L yu vy
1850 1900 1950 2000

vy u
1600 1650 1700 1750

Maunder Minimum in
Sunpots
(Also the time of the “Little Ice
Age” in Europe)
Coincidence?




The Solar Constant in the past
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Estimate comes from: (i) extrapolating direct insolation-sunspot number
relationship; (ii) modeling of the solar magnetic flux; '“C and °Be measurements
in trees (cosmogenic flux); (iii) observing range of luminosity in other Sun-like

stars. IPCC 2007 Fig 6.14
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* The Climate System; Natural and Forced Variability

Natural Variability
¢ North Atlantic Oscillation, El Nino/Southern Oscillation

Forced Change (natural)
» Volcanic Eruptions (scattering particles)
* Changes in the Solar Luminosity

Forced Change (human)
* Burning of fossil fuels (increasing GH gases)
* Burning of biomass (scattering particles)



