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Fourier spectral simulation of 2D fluid flow

Problem statement

Consider 2D incompressible inviscid fluid flow in a periodic domain 0 < x, y < 1. The flow is described
by a streamfunction ψ(x, y, t) such that (u, v) = (−ψy, ψx). If we define the vertical vorticity

ζ(x, y, t) = vx − uy = ψxx + ψyy, (1)

the flow evolves according to the vorticity equation

Dζ/Dt = ζt − ψyζx + ψxζy = 0. (2)

The initial streamfunction is an elongated isolated vortex

ψ(x, y, 0) = −0.25 exp([−4(x− 0.5)2 − (y − 0.5)2]/2σ2)

where σ = 0.15.
A Fourier pseudospectral method is ideal for accurately solving this problem because the domain

is periodic and the expected solution is fairly smooth so the derivatives can be accurately calculated
spectrally.

Given ζ and ψ at time t, the basic method is to step ζ forward to time t+ ∆t using (2). Then we
regard (1) as a Poisson equation with periodic BCs for updating ψ to time t+ ∆t.

Fourier spectral solution

We implement a pseudospectral method with RK4 time differencing to solve the vorticity equation. As
for the 1D advection equation, a CFL stability restriction can be derived from the RK4 stability region of
RK4 applied to the amplification equation dq/dt = σq, where σ is a complex growth rate. For a wavelike
disturbance exp(iK[x cos θ + y sin θ − Ut] of speed U and angular propagation direction θ spectrally
advected though the domain, σ = −iKU . For imaginary sigma, the RK4 stability region goes out to
—Im(σ∆t)—< 2.82. The maximum wavenumber supportable on the grid has max(kx) = π/∆x and
similarly for max(ky), giving a maximum diagonal wavenumber ofKmax = max(k2

x+k2

y)
1/2 = 21/2π/∆x.

Thus in 2D the CFL stability condition is

2.82 > KmaxUmax∆t = 21/2πUmax∆t/∆x

from which we deduce Umax∆t/∆x < 0.63, where Umax is the maximum fluid velocity anywhere in the
domain. This is a bit stricter than the 1D stability condition Umax∆t/∆x < 0.9.

Matlab script FS vortex.m implements a 2D pseudospectral method for the 2D inviscid vorticity
eqn. We use a 2D DFT in x and y (fft2 in Matlab) with N = 64 Fourier modes in each direction, and
a timestep ∆t = 0.25∆x, where the grid spacing ∆x = 1/N . This timestep was chosen by trial and
error. It briefly exceeds the CFL limit for the velocities of up to 2.9 that occur early in this simulation;
instability doesn’t occur because these are not exactly diagonal to the grid, but we are living dangerously
with this large a timestep. Other timestep choices would be optimal for other simulations.

The script produces the sequence of plots in Fig. 1. In the plots, negative contours are dashed and
positive contours are solid. The contour interval on all plots is 0.05 for ψ and 10 for ζ. One can see the
initial vortex being rotated counterclockwise and deformed by the flow, stretching part of the vorticity
into streamers. The vorticity starts to develop a ragged structure at the grid scale at later times and
becomes underresolved at this N around t = 0.5. The streamfunction looks much smoother since it is
an inverse Laplacian of the vorticity, and largely just rotates counterclockwise with minor distortions
in shape.
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Figure 1: Streamfunction(left) and vorticity(right) at t = 0, 0.125, 0.25, 0.375, 0.5. Max velocity Umax

= 2.88 at t = 0.125
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Figure 2: Solution with D4 = 3 at t = 0.125, showing numerical instability due to overrelaxation of
high wavenumbers by excessive 4th-order damping.

Use of 4th order smoothing to damp grid-scale noise in ζ

The ragged structure of ζ occurs because vorticity is being fluxed to high wavenumbers by the effect of
nonlinear advection. It can be smoothed in a physically realistic way by damping the highest wavenum-
bers. In a real fluid, this occurs through molecular diffusion ν∇2ζ. However, in a numerical simulation
of ‘inviscid’ flow, a 4th-order smoother −ν4∇

4ζ more concentrated on the highest wavenumbers is often
considered preferable, as this leaves the motions at larger scales more nearly unaltered while still serving
as a drain. This, like 2nd-order diffusion, is trivial to implement spectrally, since ∇4

← (k2

x + k2

y)2 in
the Fourier domain. It may be viewed as a very simple parameterization of subgrid 2D turbulence on
the vorticity field. The damping does not change the relation of vorticity to streamfunction, nor does
it affect the periodic BCs.

We choose ν4 to damp the highest resolvable wavenumbers by a large fraction each timestep, so that
nonlinear flux of vorticity into these wavenumbers is strongly damped. For the highest wavenumber
Kmax, the damping rate associated with the 4th-order smoother is σmax = −ν4K

4

max. To keep the
RK4 timestepping stable, we must restrict −σmax∆t < 2.79 (the constant for RK4 stability of a purely
decaying model is nearly the same as for oscillations). This mandates that

ν4 < 2.79/(K4

max∆t)

In our Matlab script, we include an option for 4th order damping specified through a parameter D4

such that ν4 = D4/(K
4

max∆t). We must choose D4 < 2.79 for stability. Fig. 2 shows that if D4 = 3
is chosen larger than this, instability in ζ rapidly develops. On the other hand, Fig. 3 shows that if
D4 = 2, the solution at t = 0.5 is free of fine-scale vorticity noise as desired.
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Figure 3: Solution with D4 = 2 at t = 0.5, showing desirable smoothing of numerical solution for ζ by
smaller 4th-order damping.

Sensitivity to ∆t/∆x

Next, we show the timestep sensitivity. Fig. 4 shows the solution at t = 0.5 for our standard setup
N = 64 and D4 = 2, but now with twice the timestep such that ∆t/∆x = 0.5. The domain-maximum
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simulated fluid velocity Umax at this time is given at the top of the left panel. The solution is still
stable even though Umax∆t/∆x = 0.875 exceeds the 2D CFL stability limit, because the high velocity
region moves around the domain before the highest wavenumbers have a chance to blow up. However,
with ∆t/∆x = 0.55 the solution blows up around t = 0.15.
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Figure 4: Solution with N = 64, D4 = 2 is stable out to t = 0.5 even for twice as large a timestep with
∆t/∆x = 0.5.

Sensitivity to number of modes N

Fig. 5 shows the sensitivity of the D4 = 2 simulation to the grid resolution or equivalently the number
of Fourier modes. The N = 16 solution is quite inaccurate, but for N = 32 and greater, only small
changes are visible and only in the vorticity field, which is more concentrated at high wavenumbers.
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Figure 5: Resolution convergence of solution at t = 0.5.
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