AMath 586/Atm S 581 Bretherton
Fourier spectral simulation of 2D fluid flow

Problem statement

Consider 2D incompressible inviscid fluid flow in a periodic domain 0 < z,y < 1. The flow is described
by a streamfunction ¢ (z,y,t) such that (u,v) = (=, ¥,). If we define the vertical vorticity

C(xu yat) =V —Uy = Yo + wyyu (1)
the flow evolves according to the vorticity equation
D</Dt =G — wy<m + wm<y =0. (2)

The initial streamfunction is an elongated isolated vortex
Y(x,y,0) = —0.25 exp([—4(z — 0.5)* — (y — 0.5)%] /20%)

where o = 0.15.

A Fourier pseudospectral method is ideal for accurately solving this problem because the domain
is periodic and the expected solution is fairly smooth so the derivatives can be accurately calculated
spectrally.

Given ¢ and ¢ at time ¢, the basic method is to step ¢ forward to time ¢ + A¢ using (2). Then we
regard (1) as a Poisson equation with periodic BCs for updating % to time t + At.

Fourier spectral solution

We implement a pseudospectral method with RK4 time differencing to solve the vorticity equation. As
for the 1D advection equation, a CFL stability restriction can be derived from the RK4 stability region of
RK4 applied to the amplification equation dgq/dt = oq, where o is a complex growth rate. For a wavelike
disturbance exp(iK [z cosf + ysinf — Ut] of speed U and angular propagation direction 6 spectrally
advected though the domain, 0 = —iKU. For imaginary sigma, the RK4 stability region goes out to
—Im(0cAt)—< 2.82. The maximum wavenumber supportable on the grid has max(k,) = n/Az and
similarly for max(k, ), giving a maximum diagonal wavenumber of K ,q, = max(k2+k2)!/2 = 2127 [ Az,
Thus in 2D the CFL stability condition is

2.82 > KpnazUnmazAt = 22270, 00 At/ A

from which we deduce Upp,q At/Ax < 0.63, where U,y,q, is the maximum fluid velocity anywhere in the
domain. This is a bit stricter than the 1D stability condition U,,a: At/Az < 0.9.

Matlab script FS_vortex.m implements a 2D pseudospectral method for the 2D inviscid vorticity
eqn. We use a 2D DFT in z and y (££t2 in Matlab) with N = 64 Fourier modes in each direction, and
a timestep At = 0.25Ax, where the grid spacing Az = 1/N. This timestep was chosen by trial and
error. It briefly exceeds the CFL limit for the velocities of up to 2.9 that occur early in this simulation;
instability doesn’t occur because these are not exactly diagonal to the grid, but we are living dangerously
with this large a timestep. Other timestep choices would be optimal for other simulations.

The script produces the sequence of plots in Fig. 1. In the plots, negative contours are dashed and
positive contours are solid. The contour interval on all plots is 0.05 for ¥ and 10 for (. One can see the
initial vortex being rotated counterclockwise and deformed by the flow, stretching part of the vorticity
into streamers. The vorticity starts to develop a ragged structure at the grid scale at later times and
becomes underresolved at this N around ¢t = 0.5. The streamfunction looks much smoother since it is
an inverse Laplacian of the vorticity, and largely just rotates counterclockwise with minor distortions
in shape.
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Figure 1: Streamfunction(left) and vorticity(right) at ¢ = 0, 0.125, 0.25, 0.375, 0.5. Max velocity Upas
=288 att=0.125
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Figure 2: Solution with Dy = 3 at t = 0.125, showing numerical instability due to overrelaxation of
high wavenumbers by excessive 4th-order damping.

Use of 4th order smoothing to damp grid-scale noise in (

The ragged structure of ¢ occurs because vorticity is being fluxed to high wavenumbers by the effect of
nonlinear advection. It can be smoothed in a physically realistic way by damping the highest wavenum-
bers. In a real fluid, this occurs through molecular diffusion »V?2¢. However, in a numerical simulation
of ‘inviscid’ flow, a 4th-order smoother —v4V*( more concentrated on the highest wavenumbers is often
considered preferable, as this leaves the motions at larger scales more nearly unaltered while still serving
as a drain. This, like 2nd-order diffusion, is trivial to implement spectrally, since V* « (k2 + k2)? in
the Fourier domain. It may be viewed as a very simple parameterization of subgrid 2D turbulence on
the vorticity field. The damping does not change the relation of vorticity to streamfunction, nor does
it affect the periodic BCs.

We choose v4 to damp the highest resolvable wavenumbers by a large fraction each timestep, so that
nonlinear flux of vorticity into these wavenumbers is strongly damped. For the highest wavenumber
K gz, the damping rate associated with the 4th-order smoother is oy, = —V4K§w1. To keep the
RK4 timestepping stable, we must restrict —o,,q, At < 2.79 (the constant for RK4 stability of a purely
decaying model is nearly the same as for oscillations). This mandates that

vy <279/ (K2 A

max

In our Matlab script, we include an option for 4th order damping specified through a parameter Dy
such that vy = Dy/(K2,,At). We must choose Dy < 2.79 for stability. Fig. 2 shows that if Dy = 3

is chosen larger than this, instability in ¢ rapidly develops. On the other hand, Fig. 3 shows that if
D4 = 2, the solution at ¢t = 0.5 is free of fine-scale vorticity noise as desired.
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Figure 3: Solution with D, = 2 at t = 0.5, showing desirable smoothing of numerical solution for { by
smaller 4th-order damping.

Sensitivity to At/Az

Next, we show the timestep sensitivity. Fig. 4 shows the solution at ¢ = 0.5 for our standard setup
N =64 and D4 = 2, but now with twice the timestep such that A¢t/Axz = 0.5. The domain-maximum



simulated fluid velocity U,,q, at this time is given at the top of the left panel. The solution is still
stable even though U,,q,At/Ax = 0.875 exceeds the 2D CFL stability limit, because the high velocity
region moves around the domain before the highest wavenumbers have a chance to blow up. However,
with At/Axz = 0.55 the solution blows up around ¢ = 0.15.
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Figure 4: Solution with N = 64, D4 = 2 is stable out to ¢t = 0.5 even for twice as large a timestep with
At/Ax = 0.5.

Sensitivity to number of modes N

Fig. 5 shows the sensitivity of the Dy = 2 simulation to the grid resolution or equivalently the number
of Fourier modes. The N = 16 solution is quite inaccurate, but for N = 32 and greater, only small
changes are visible and only in the vorticity field, which is more concentrated at high wavenumbers.
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Figure 5: Resolution convergence of solution at t = 0.5.




