Example questions for midterm

(a)	On	a sumi	ner day	that is	clear	with	no	frontal	activ	ity	over	land
ske	tch	diurna	l variati	ons of v	vinds	at 2 a	ınd	500 me	eters.	Ex	plain	why.

(b) Describe general characteristics of turbulence.

(c) Describe T	avlor's frozer	n turbulence	hypothesis.
----------------	----------------	--------------	-------------

2. Based on the following information derive a) the magnitude and direction of pressure gradient force, Coriolis force, and friction force per unit mass near the surface; b) the average magnitude of the actual wind shear across the boundary layer; and c) the frictional veering of the wind across the boundary layer; and d) the average value of the Richardson number and existence of turbulence in the PBL.

At 45°N, the surface geostrophic wind speed is 17 m s⁻¹ at 145 deg (wind directions use meteorological convention);

PBL = 1000 m, assume the winds are geostrophic at this height; Assume that the measurement at 1 m height is representative of the surface wind and the pressure at 1 m is 1000 mb;

The atmosphere is dry.

The observations are

1.

Height (m)	1	1000
Wind speed (m s ⁻¹)	10	20
Wind direction (deg)	110	135
Temperature (°C)	25	23

3.

For the Ekman layer in the barotropic atmosphere, the equations of motion can be written as

$$-f(v-v_g) = K(d^2/dz^2)(u-u_g)$$

$$f(u-u_e) = K(d^2/dz^2)(v-v_e)$$
(1)

where K is the effective viscosity.

The boundary conditions are

$$u = 0$$
, $v = 0$, at $z = 0$

$$u = u_g, \ V = V_g, \text{ as } z \to \infty.$$
The solutions are
$$u - u_g = -e^{-az}[u_g \cos(az) + v_g \sin(az)]$$

$$v - v_g = e^{-az}[u_g \sin(az) - v_g \cos(az)]$$
where $a = (f/2K)^{1/2}$.

- (a) Using Eq.(2), obtain the horizontal shear stress components τ_{zx} and τ_{zy} .
- (b) In a coordinate system with the x axis parallel to the geostrophic wind, write down the expressions for the normalized vertical components (u/G and v/G where G is the magnitude of geostrophic wind).
- (c) In the same coordinate system draw the wind hodograph using the expressions above as function of az from 0 to 2π .
- (d) If $f = 10^{-4}$ s⁻¹ and K = 4 m² s⁻¹, what is the Ekman layer thickness?